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Abstract— In [1], a new method for testing the structural
stability of multidimensional systems has been presented. The
key idea of this method is to reduce the problem of testing
the structural stability to that of deciding if an algebraic
set has real points. Following the same idea, we consider in
this work the specific case of two-dimensional systems and
focus on the practical efficiency aspect. For such systems, the
problem of testing the stability is reduced to that of deciding
if a bivariate algebraic system with finitely many solutions has
real ones. Our first contribution is an algorithm that answers
this question while achieving practical efficiency. Our second
contribution concerns the stability of two dimensional systems
with parameters. More precisely, given a two-dimensional
system depending on a set of parameters, we present a new
algorithm that computes regions of the parameter space in
which the considered system is structurally stable.

I. INTRODUCTION

Two-dimensional systems have wide applications in sev-
eral areas such as signal and image processing or iterative
algorithm design. An important question in the study of
such systems concerns their stability which is a necessary
condition for them to work properly. In this paper, we are in-
terested in testing the structural stability of two-dimensional
discrete linear systems.

Given a two-dimensional discrete linear system described
within the frequency domain by the transfer function

G(z1, z2) := N(z1,z2)
D(z1,z2 )

,

where N and D are polynomials in the variables z1, z2 with
real coefficients such that N ∧ D = 1. This system is said
to be structurally stable if the denominator of its transfer
function is devoid from zeros in the complex unit bi-disk
D2 := {(z1, z2) ∈ C2 | |z1| ≤ 1 and |z2| ≤ 1}, or in other
words, if:

D(z1, z2) 6= 0 for |z1| ≤ 1, |z2| ≤ 1. (1)

In this work, we consider the two following problems:

Problem 1 (non parametric stability): Given a two-
dimensional system defined by a transfer function

G(z1, z2) := N(z1,z2)
D(z1,z2 )

,

with N,D ∈ R[z1, z2]. Check if this system is stable, that
is, if Condition (1) is satisfied.

Problem 2 (parametric stability): Given a two-dimensional
system defined by a transfer function
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G(z1, z2, U) := N(z1,z2,U)
D(z1,z2,U) ,

where N,D ∈ R[U ][z1, z2] and U = {U1, . . . , Uk} is a
set of real parameters. Compute regions in the parameter
space Rk in which the underlying system (after substitution
of the parameters) is either stable or unstable. In other
words, the goal is to compute an union of cells Ci in
Rk such that, ∀(u1, . . . , uk) ∈ Ci, the system defined by
G(z1, z2, u1, . . . , uk) is either stable or unstable.

There exist numerous tests for solving Problem 1. One can
mention for instance the work in [2], [3], [4], [5], [6] and the
references therein, where this problem is solved using purely
algebraic methods. Common to all these methods is that they
proceed recursively on the number of variables, reducing the
computations with a 2-D polynomial to computations with a
set of 1-D polynomials using algebraic tools like resultants
and sub-resultants [7]. Another set of methods as for instance
the one in [8] use the sum of square techniques for testing
the stability condition. Such methods show better practical
behavior compared to purely algebraic method, but are in
general conservative i.e., provide only sufficient stability
condition. For a complete overview on two-dimensional
stability tests, the reader may refer to [9].

For Problem 2, to the best of the author’s knowledge,
there does not exist any general implemented method for
solving it. In [5], the authors propose a two-dimensional
stability test and apply the latter to example of systems with
parameters. However, due to the simplicity of these systems,
the computation of the desired regions is performed by hand
and no indication is given on how to obtain them in an
automatic way.

Our contribution in this paper is twofold. We firstly present
a non conservative and practically efficient method for solv-
ing Problem 1. This method starts from the following set of
conditions which has been shown in [10] to be equivalent to
Condition (1): D(z1, 1) 6= 0 | |z1| ≤ 1,

D(1, z2) 6= 0 | |z1| ≤ 1,
D(z1, z2) 6= 0 | |z1| = |z2| = 1.

(2)

A first remark is that the first two conditions of (2)
involve only univariate polynomials, and can thus be easily
checked using classical one-dimensional stability tests (see
for instance [11], [2]). The main difficulty is then to check
the last condition of (2), i.e.:

D(z1, z2) 6= 0 | |z1| = |z2| = 1. (3)



It has been shown in [1] that testing Condition (3) for
multidimensional systems is equivalent, via a particular
Möbius transformation, to deciding if an algebraic system of
equations admits real zeros. Adapted to the two-dimensional
system under consideration, this allows to reduce the problem
to that of deciding if a bivariate algebraic system with
finitely many complex solutions admits real solutions. For
this problem, we present a method based on the computation
of the so-called separating form for the solutions which is a
classical notion in solving systems algorithms.

Our second contribution is a new method for solving
Problem 2. Similarly as above, this method starts from
the set of conditions (2) which now depends on a set of
parameters {U1, . . . , Uk}. For the two first conditions, we
extend a classical univariate stability test so that it can handle
parameters, which allows to derive a stability condition as
a sign condition on some polynomials depending only on
the parameters. For the last condition of (2), we perform the
same Möbius transformation as above and then make use
of the the concept of Discriminant variety of a polynomial
system which is a generalization of the classical notion of
discriminant of a univariate polynomial. Such a Discriminant
variety allows to partitioning the parameter space Rk into
regions in which a given system of equations has a constant
number of real solutions.

This paper is organized as follows. In Section II, some re-
sults obtained in [1] are stated in the case of two-dimensional
systems. In Section III, we describe an algorithm for deciding
if a bivariate algebraic system with real coefficients has or
not real solutions. In Section IV, we address the problem of
testing the stability of two-dimensional systems depending
on parameters. Finally, in Section V, we illustrate our algo-
rithm through a set of examples, both in the parametric and
the non-parametric case.

II. ALGEBRAIC TRANSFORMATION

Notation: Throughout this paper. For a given set of
polynomials f1, . . . , fs in Q[x1, . . . , xn], I := 〈f1, . . . , fs〉
denotes the ideal generated by f1, . . . , fs, VC(I) := {α ∈
Cn | f1(α) = · · · = fs(α) = 0} the complex variety (the
set of complex zeros) of I and VR(I) := {α ∈ Rn | f1(α) =
· · · = fs(α) = 0} its real variety (the set of real zeros).

In the following, we recall and adapt the approach pre-
sented in [1] to the specific case of two-dimensional system.

As mentioned in the introduction, the main step in
checking conditions (2) is the test of Condition (3), i.e.,
D(z1, z2) 6= 0, |z1| = |z2| = 1, which resumes to decide
the existence of complex zeros of D(z1, z2) on the bi-circle

T2 := {(α1, α2) ∈ C2 | |α1| = 1 and |α2| = 1}.

The first step in [1] consists in applying the Möbius
substitution z 7→ x−i

x+i to each variable of D(z1, z2) (such
a transformation maps the real line R := R ∪ ∞ to the
unit circle T deprived from the point 1, i.e., to T\{1}).
This yields a rational fraction in C(x1, x2) whose numerator
writes as R(x1, x2) + i C(x1, x2). Accordingly, it follows:

Theorem 1: Let D(z1, z2) ∈ R[z1, z2] of degrees d1, d2
in z1, z2. One can compute two polynomials R(x1, x2) and
C(x1, x2) of total degrees bounded by d1 + d2, such that
VC(D(z1, z2)) ∩ [T\{1}]2 = ∅ ⇐⇒ VR(R, C) = ∅.

As pointed out in [1], the condition stated in the above
theorem is not equivalent to Condition (3) since it excludes
the points of the unit bi-circle that have at least one of their
coordinates equals to one. However, checking that D(z1, z2)
does not vanish at these points, i.e., D(1, z2) 6= 0 | |z2| = 1
and D(z1, 1) 6= 0 | |z1| = 1 is included in the test of the
two first conditions of (2). Consequently, D(z1, z2) satisfies
Condition (1) if and only if
• D(z1, 1) 6= 0 for |z1| ≤ 1.
• D(1, z2) 6= 0 for |z2| ≤ 1.
• The polynomial system {R(x1, x2) = C(x1, x2) = 0}

does not have real solutions.

III. NON PARAMETRIC STABILITY

As shown in the previous section, testing the stability
of a two-dimensional system is equivalent to testing the
stability of two one-dimensional systems and deciding if an
algebraic system {R(x1, x2) = C(x1, x2) = 0} admits real
solutions. Testing the stability of one-dimensional systems
can be efficiently achieved using existing implementations
(see for instance [2]). Therefore, in the following, we focus
our attention on the second problem, that is, deciding if the
polynomial system {R(x1, x2) = C(x1, x2) = 0} has real
solutions.

In the following, we assume without loss of generality that
R(x1, x2) and C(x1, x2) are weakly coprime in Q[x1, x2],
i.e. gcd(R, C) = 1, which implies that the ideal I := 〈R, C〉
is zero-dimensional1. V (I) := {(α1, α2) ∈ C2|R(α1, α2) =
C(α1, α2) = 0} denotes the set of its complex solutions.

Our idea is to reduce the problem of deciding the existence
of real solutions of I to that of deciding the existence of real
roots of a well chosen univariate polynomial. To do so, let
start with the following result which stems from the fact that
the quotient algebra A := Q[x1,x2]

I is a finite dimensional Q-
vector space.

Theorem 2: Let P ∈ Q[x1, x2] and let MP be the
endomorphism of the multiplication by P in A

MP : A −→ A
f 7−→ Pf.

The eigenvalues of MP are P (α1, α2),with (α1, α2) ∈
V (I). The multiplicity of P (α1, α2) as an eigenvalue of MP

is equals to the multiplicity of (α1, α2) as a zero of I [13].

Hence, if CP denotes the characteristic polynomial of
MP , then CP (t) =

∏
(α1,α2)∈V

(t− P (α1, α2))µ(α1,α2), where

µ(α1, α2) denotes the multiplicity of the zero (α1, α2) in I .
Moreover, a bijection exists between the solutions of V (I)

1If R and C are not coprime, it is sufficient to compute their gcd
in Q[x1, x2], G(x1, x2), and to consider the two systems {RG ,

C
G } and

{G, ∂G
∂x1
G} which are known to be zero-dimensional and whose the union

of real solutions are the real solutions of {R, C} [12].



and the roots of CP (t) providing that the polynomial P is a
separating element for V (I).

Definition 1: P ∈ Q[x1, x2] is a separating element for
V (I) if and only if the map (α1, α2) ∈ V (I) 7−→ P (α1, α2)
is injective.

The fact that P is a separating element for V (I) yields
an important property regarding to the existence of real
solutions of V (I). The following result can straightforwardly
be proved considering a parameterization of the solutions, for
example using [14].

Theorem 3: Let P ∈ Q[x1, x2] be a separating element
for V (I). Then, the polynomial CP (t) has real roots if and
only if V (I) has real solutions.

Consequently, computing a separating element of V (I) as
well as the corresponding polynomial CP (t) allows to reduce
the problem of searching for real solutions of V (I) to that
of searching for real roots of CP (t).

For the computation of a separating element of V (I),
an important remark is that the number of non separating
elements is bounded by n (n−1)

2 where n denotes the cardinal
of V (I) [13]. Thus, a separating element can always be
found among the set

{
x1 + a x2, a = 0, . . . , n (n−1)

2

}
. On

the other hand, we know by Bezout that, for any poly-
nomials R and C of total degree d, the cardinal of V (I)
is bounded by d2. Hence one strategy for computing a
separating element for V (I) is to loop over 1 + d2(d2−1)

2
different integers a, compute for each a the number of
distinct roots of Cx1+a x2(t) (the degree of its squarefree
part Cx1+a x2

(t) :=
Cx1+a x2

gcd(Cx1+a x2
,C′

x1+a x2
) ), and finally select

an a for which this number is maximal. This ensures that
the degree of Cx1+a x2

(t) is equals to the cardinal of V (I),
and thus that the roots of Cx1+a x2

(t) are in bijection with
the points of V (I). However from the computation point of
view this strategy is not recommended since it requires the
computations of d2(d2−1)

2 characteristic polynomials along
with their squarefree parts. The latter calculation requires in
addition the computation of a Gröbner basis of I (to get the
description of Q[x1,x2]

I ) which can be costly in practice.
Alternatively, we propose below a method that avoids the

computation of a Gröbner basis of I , and searches adaptively
for a separating element. More precisely, this method makes
use of a separation test which allows to stop the algorithm
as soon as a separating element is found.

The following first result shows that for a given x1 +a x2,
the polynomial Cx1+a x2

(t) is equals, up to a factor in Q,
to the resultant of two polynomials resulting from R and C
after a change of variable.

Theorem 4: [12] Let R(x1, x2), C(x1, x2) ∈ Q[x1, x2].
Define R′(t, x2) := R(t − a x2, x2) and C′(t, x2) := C(t −
a x2, x2) where a ∈ Z is such that the leading coefficient of
R′ and C′ with respect to x2 are coprime. Then, the resultant
of R′ and C′ with respect to x2, denoted Resx2(R′, C′), is
equal to c

∏
(α1,α2)∈V (t− α1 − aα2)µ(α1,α2), with c ∈ Q.

On the other hand, given a linear form x1+a x2, it is well
known that the latter is separating for V (I) if and only if for
each root α of Resx2

(R′, C′) (where R′ and C′ are defined
as in Theorem 4), the gcd of R′(α, x2) and C′(α, x2) has
exactly one root.

In order to check this separation condition for a given
x1 + a x2, we first perform a triangular decomposition
of {R′(t, x2), C′(t, x2)} (see Section (A) of Appendix for
details). This yields a set of triangular systems of the form
{rk(t),Sresk(t, x2)}, k = 1 . . . min(degx2

(R), degx2
(C)),

such that Sresk(α, x2) is the gcd of R′(α, x2) and C′(α, x2)
for any root α of rk(t). Then, we use the following result
(which proof can be found in [15]).

Theorem 5: Let R(x1, x2), C(x1, x2) ∈ Q[x1, x2]. Define
the polynomials R′(t, x2), C′(t, x2) as in Theorem 4, and
let {rk(t),Sresk(t, x2)}, k = 1 . . .m be the triangular
decomposition of {R′, C′}. Then x1 + a x2 is a separating
element for V (I) if and only if ∀k ∈ {1, . . . ,m} and
∀i ∈ {0, . . . , k − 1},

k (k−i) sr{k,i}(t) sr{k,k}(t)−(i+1) sr{k,k−1}(t) sr{k,i+1}(t)

is zero modulo rk(t).

Finally, our algorithm for checking if V (I) has real
solutions consists in computing for arbitrary linear forms
x1+a x2 the above triangular decomposition and stop as soon
as the condition of Theorem 5 is satisfied, which implies that
the form x1 + a x2 is separating. Then, it remains to check
if the resultant of R′ and C′ with respect to x2 has real roots
which can be done using for example Sturm sequence [7].
Remark: In practice, several strategies are used in order to
reduce the running time of the above algorithm. For instance,
the computation is stopped as soon as a resultant, computed
for an arbitrary form x1 +a x2, is square free, which implies
that the form x1+a x2 is separating according to Theorem 4.
The computation is also stopped when the computed resultant
does not have real zeros, since it implies that the system
does not have real zeros as well. Another example is the
way we choose the candidate forms x1 + a x2. Indeed, in
order to increase the probability of the form to be separating,
a first computation is performed modulo a prime number
ν (coefficients are considered in Z

ν Z ). Such a computation
turns out to be very fast since it avoids coefficient swell
in the algorithm. Providing that a linear form is separating
modulo the prime ν, the latter has then a high probability to
be separating in Z and one can choose it as a candidate for
the algorithm in Z.

IV. PARAMETRIC STABILITY

In this section, we consider a two-dimensional sys-
tem defined by a polynomial D(z1, z2, U) where U =
{U1, . . . , Uk} is a set of parameters. As mentioned in the
introduction, our goal is to study the stability of this system
(the truth of Condition (1)) depending on the values of the
parameters. Starting from the poynomial D(z1, z2, U), our
approach consists roughly in computing a set of polyno-
mials {p1, . . . , ps} in Q[U1, . . . , Uk] satisfying the property



that the stability of the system defined by D(z1, z2, U)
does not change, provided that the sign of the sequence
{p1(U), . . . , ps(U)} does not change. Then Rk is decom-
posed into cells in which the signs of {p1, . . . , ps} remain
invariants, and cells for which the system is stable are kept.

Considering D(z1, z2, U) as a polynomial in the variables
z1, z2 with coefficients are polynomials in Q[U1, . . . , Uk],
we still have an equivalence between Condition (1) and the
set of conditions (2) and we can apply to the last condition
of (2) the transformation given in Section II which yields the
following set of conditions depending on the parameters U . D(z1, 1, U) 6= 0 | |z1| ≤ 1,

D(1, z2, U) 6= 0 | |z2| ≤ 1,
V (〈R(x1, x2, U), C(x1, x2, U)〉) ∩R2 = ∅.

(4)

We shall start with the study of the first two conditions
involving univariate polynomials with parameters. Our first
step consists in transforming these conditions so that contin-
uous stability tests can be used. More precisely, we apply
the change of variable s1 = 1−z1

1+z1
(resp. s2 = 1−z2

1+z2
)

to the polynomial D(z1, 1, U) (resp. D(1, z2, U)). These
conditions then write as D1(s1, 1, U) 6= 0, Re(s1) ≥ 0
and D2(1, s2, U) 6= 0, Re(s1) ≥ 0, where D1(s1, 1, U)
(resp. D2(1, s2, U)) is the numerator of D( 1−s1

1+s1
, 1, U) (resp.

D(1, 1−s21+s2
, U)). In a second step, we use a classical result of

Linard and Chipart [7] that expresses the stability condition
of a continuous polynomial D(s) as a positivity condition of
its coefficients as well as some signed principal subresultant
sequence of two polynomials F (s) and G(s) satisfying
D(s) = F (s2) + sG(s2) (see [7, Thm. 9.30]). Using the
specialization property of subresultants (see Section (A)),
we can generalize this result to the case of univariate
polynomials depending on parameters. In particular, applying
this test to the polynomials D1(s1, U) and D2(s2, U) yields
a set of polynomials depending only on parameters U , and
the stability of D1(s1, U) and D2(s2, U) (resp. D(z1, 1, U)
and D(1, z2, U)) is then satisfied providing that these poly-
nomials are positive. In the sequel, we shall denote these
polynomials by φi(U).

The next question of interest is to decide if the system

S :=

{
R(x1, x2, U) = 0
C(x1, x2, U) = 0

(5)

where U = [U1, . . . , Uk], admits real solutions.
In the following, we shall assume that the system S is

generically zero-dimensional, that is, for almost any values of
the parameters u ∈ Ck, the underlying system, after substi-
tuting the parameters, {R(x1, x2, u) = 0, C(x1, x2, u) = 0}
admits a finite number of complex solutions.

A. Discriminant varieties: definition and properties

Our approach for answering the above question makes
use of the concept of discriminant variety of a polynomial
system depending on parameters [16]. Loosely speaking, a
discriminant variety, denoted by WD, is an algebraic variety
in the parameter space defining a partition of the latter that
consists of:

• The discriminant variety WD itself, and
• Disjoint open connected subsets U1, · · · ,Ur of the

parameter space which do not insect the discriminant
variety and such that any solution of (5) with parameters
lying in some Ui, belongs to the image of an analytic
function of Ui into the solutions of (5).

Remark. An important property of discriminant varieties is
that, if u and v are two vectors of parameters which belong
to the same Ui, the specialized systems SU=u and SU=v have
exactly the same number of real roots.

It should be stressed that the concept of discriminant
variety (as well as its computation) is defined for general
systems of equations (with n variables). However, in the
sequel, for the sake of simplicity, we restrict our description
to the case of systems of two equations in two variables. For
a complete description, one may refer to the work in [16].

Since WD belongs to the parameter space, we introduce
the projection mapping ΠU : (α1, α2, u) ∈ C(2+k) 7−→
u ∈ Ck. We also introduce the inverse projection on the
parameter space Π−1U : u 7−→ (u, α1, α2) ⊂ V (S) .

It has been shown that if one considers the set of all
u ∈ Ck such that there exists no neighborhood U of u
such that Π−1U (U) ∩ V (S) is an analytic covering of U , this
set defines a variety named minimal discriminant variety of
V (S) associated with ΠU , and a key remark is that this
minimal variety is defined independently of any algorithm.

In our setting, the ideal S = 〈R, C〉 is equidimensional
and the minimal discriminant variety WD of V (S) associated
with ΠU is the union of two subsets:
• O∞: the set of α ∈ Ck such that Π−1U (U)∩V (S) is not

compact for any compact neighborhood U of α in Ck

• Oc: the set of the critical values of ΠU union the
projection of the singular points of V (S)

Intuitively, O∞ represents parameter’s values such that there
exist either vertical leafs of solutions or leafs that are going
to infinity above some of their neighborhood, while Oc
represents parameter’s values such that above some of their
neighborhood, the number of leafs varies. Roughly speaking,
WD represents parameter’s values over which the number of
solutions changes.

In our case, Oc = ΠU (V (〈R, C, Jacx1,x2(R, C)〉)) where
Jacx1,x2(R, C) denotes the determinant of the Jacobian ma-
trix with respect to the variables x1 and x2.

B. Discriminant varieties: computations

An important remark for the computation of the discrimi-
nant variety WD of S is that both O∞ and Oc are algebraic
sets (for general systems, this is not always the case for Oc).
WD can thus be described as the union of two algebraic sets
that can be computed independently.
O∞ and Oc are projections of some algebraic varieties

and computing them remains to eliminating variables in the
systems of equations corresponding to these varieties, that
is, for a given I = 〈f1, . . . , fl〉 ⊂ K[x1, x2, U ], computing
ΠU (V (I)) = V (IU ) where IU ⊂ K[U ] is defined by IU =
I ∩ K[U ]. Algorithmically, IU can be computed by means



of Gröbner basis for any elimination ordering < such that
U < x1, x2 (see Appendix for details). More precisely, it
suffices to compute a Gröbner basis for such an ordering
and to keep the polynomials that belong to K[U ].

Hence, computing an ideal Ic such that Oc = V (Ic)
remains to computing the determinant Jacx1,x2(R, C) and
a Gröbner basis of the ideal 〈R, C, Jacx1,x2

(R, C)〉 for any
elimination ordering < such that U < x1, x2.

In [16], it has been also remarked that such elimination
orderings allow to compute an ideal I∞ ⊂ Q[U ] such that
O∞ = V (I∞). Precisely, Suppose that G is a reduced
Gröbner basis of 〈R, C〉 for a monomial ordering <U,x1,x2

,
that is, the product of two degree reverse lexicographic
orderings <U for the parameters and <x1,x2 for the variables.
We define the set E∞i = {LM<x1,x2

(g) | g ∈ G, ∃m ≥
0, LM<x1,x2

(g) = xmi }, where LM< denotes the leading
monomial of a polynomial for an admissible monomial
ordering <, then:
• E∞i is the Gröbner basis of some ideal I∞i ⊂ K[U ]

for <U ;
• O∞ =

⋃n
i=k+1 V (I∞i ).

C. Discussing the number of real solutions

Once a discriminant variety WD of S computed, we get
a partition of the parameter space made of the discriminant
variety and of the connected components of its complemen-
tary with the property that over any neighborhood U that
does not meet WD, Π−1U (U) is an analytic covering of U . In
particular, the number of solutions of S is constant over any
connected set that do not intersect the discriminant variety.

Also, for computing the (constant) number of solutions
over each connected component that do not meet the dis-
criminant variety, it suffices to take one vector u of parameter
values in each of these components and to solve the zero-
dimensional system SU=u.

Remark: Note that the structure of the solutions is not
known above the discriminant variety itself. As it is a set of
null measure, it is useless here to study what is going on for
such parameter values. However, the discriminant variety is
defined by a polynomial system that can be merged to the
original system to follow the study recursively.

The discriminant variety has been defined with respect to
complex solutions. For real solutions, two cases occur : either
ΠU (V (S)∩Rk+2) ⊂WD and one needs to study V (〈S〉)∩
Π−1U (WD) instead of V (S) or ΠU (V (S)∩Rk+2)*WD and
then WD ∩Rk is a discriminant variety for V (S) ∩Rk+2,
which is the usual situation. Note that in the second case, if
Wd is minimal for V (S) , then Wd ∩Rk it not necessarily
minimal for V (S) ∩Rk+2.

D. Computing regions of stability

We now go back to our initial problem which is the
computation of regions in the parameter space, such that
the set of Conditions (4) is satisfied (and thus the system
is stable). As mentioned at the beginning of this section,
we can compute a set of polynomials {φi(U)}i=1,...,l1 such
that, the two first conditions of (4) are satisfied if and only

if φi(U) > 0. On the other hand, according to above,
we can also compute a set of polynomials {fi(U)}i=1,...,l2

that defines a partition of the parameter space in which the
number of real solutions of S is constant. Now, considering
the global set of polynomials F := {φi(U), fi(U)}, we
can compute a Cylindrical Algebraic Decomposition (CAD)
adapted to F [17]. This yields a disjoint union of cells in
Rk in which the signs of the polynomials in F are constant.
In particular, by definition, inside each of these cells, both
the sign of the polynomial φi(U) and the number of real
solutions of S are constant. This implies that the system is
either stable or unstable. To determine the cells for which the
system is stable, it suffices to select a simple point (vector
of parameter values) in each cell and to test the Conditions
(4) after substitution of the parameters.

In practice, we compute a partial CAD since we are only
interested in computing cells of maximal dimension.
Partial CAD: Given a set of polynomials
{P1, . . . , Pk} ∈ Q[x1, .., xn−1][xn], consider
Proj({P1, . . . , Pd}, xn) ⊂ Q[x1, .., xn−1] =
{LeadingCoeffxn

(Pi),Discriminantxn
(Pi), i = 1..d} ∪

{Resxn
(Pi, Pj), i 6= j; i, j = 1..d}. Then ∪i=1..dV (Pi)

is an analytic covering of each open connected set
of Rn−1 that do not meet V (Proj(P1, . . . , Pd, xn)).
Roughly speaking, ∪i=1..dV (Pi) decomposes the cylinder
over any connected open set U ⊂ Rn−1 that do not
meet V (Proj(P1, . . . , Pd, xn)) into the union of leafs
(of dimension n − 1) of ∪i=1..dV (Pi) and bands (of
dimension n) between two of these leafs with the property
that [sign(P1), . . . , sign(Pd)] defines a constant sequence in
each band. Now, given Proj(P1, . . . , Pd, xn) one can then
compute recursively Proj(. . . Proj(P1, .., Pd, xn), . . . , xn−1)
until getting points and then obtain recursively a partition of
Rn into some algebraic proper set D (of dimension at most
n− 1) and some cells of dimension n in which P1, . . . , Pd
have all a constant sign.

This process is a partial CAD adapted to P1, . . . , Pd. The
difference with the classical CAD is that P1, . . . , Pd have
not necessarily a constant sign on the algebraic set D. Note
that D can be decomposed itself using the same process.

V. EXPERIMENTATION

A. Non parametric case

As mentioned in Section III, the algorithm described in
the present article is a set of optimizations for the two-
dimensional case of a general algorithm we proposed in [1].

Roughly speaking, we mainly propose a dedicated method
for deciding if a system of two equations in two variables
admits real solutions, keeping track of the shape of the
systems linked to the stability problem we want to study.

In order to measure the gain we obtain, we compare
against the general method Isolate partially developed
by the same authors and available in the Maple software
RootFinding. This function first computes a Rational
Univariate Representation ([14]) from a Gröbner basis com-
puted with F4 algorithm ([18]) and then makes use of a



variant of Descartes algorithm [19] as well as multi-precision
interval arithmetic [20] to isolate the real roots of the system.

For the present experiments we re-use some black boxes
developed for the algorithms described in [?] or [23] which
are using exactly the same technical base as the above
function to design the algorithm’s component that computes
the univariate polynomial Cx1+a x2 and performs the sepa-
ration check. All the other components are shared with the
RootFinding[Isolate] function from Maple.

For dense polynomials with coefficients that can be en-
coded on 23 bits (such as if there were coming from floating
point numbers), the results we obtained on a core i7 3.5
Ghz with 32 GB of memory are summarized in the following
table in which Degree denotes the degree of the polynomial
D(z1, z2) to be studied, ]V (I) the number of complex
roots of the bivariate system to be solved to decide the
stability, RootF inding the computation time of the general
function RootFinding[Isolate] and Dedicated our
new (dedicated) algorithm.

Degree ]V (I) RootFinding Dedicated
10 200 2.3 < 1
15 450 29.8 < 1
20 800 223.4 < 1
25 1280 866.9 1.42
30 1800 3348.2 2.79
35 2450 > 1 hour 7.81
40 3200 > 1 hour 15.51

Note that on these examples, we did not report the com-
putation times required by the two other conditions (stability
of D(1, z2) and D(z1, 1)) since they are small compared to
the resolution of the full bivariate system.

An interesting fact is that we naively implemented in
Maple the Möbius transforms so that .... it became the
bottleneck for the dedicated algorithm.

B. Parametric case

Let now consider a 2D transfer function depending on two
parameters and whose denominator is:
D(z1, z2) = (4u1 + 2u2 + 3)z1 + (−2u1 + 1)z2 + (4u1 −
2u2−2)z1 z2+(2u1−2u2 +4)z1

2 z2+(−u1−u2 +1)z1 z2
2.

We first apply the algebraic transformation from Section II
to D(z1, z2), the resulting bivariate parametric system we
have to study is {R(x1, x2) = C(x1, x2) = 0} with
R(x, y) = 7 u1 x

2y2−3 u2 x
2y2+7x2y2+u1 x

2+7 y2u1−
5 u2 x

2 + y2u2 − x2 − 3 y2 + u1 − u2 − 11,

C(x, y) = 10 u1 x
2y − 8 u1 xy

2 + 6 u2 x
2y + 4 u2 xy

2 +
4x2y−6xy2−8 u1 x+10 u1 y+4 u2 x+6 yu2 −6x+4 y]

The minimal discriminant variety of this bivariate
system with respect to the projection onto (u1, u2)
can be obtained by running the Maple function
RootFinding[Parametric][Discriminant Variety]

which gives an union of 10 lines, 2 quadrics and one curve
of degree 6.

Computing the conditions on the parameters that discrim-
inate the situations where D(z1, 1) (resp. D(1, z2)) has (or

Fig. 1. Global view - Parameter space decomposition

Fig. 2. Zoom u1 = −4 . . . 2, u2 = −7 . . . 7 - Parameter space
decomposition

not) roots in the unit disk lead to a list of 6 lines with 3 of
them already in the discriminant variety.

Decomposing the parameter space cylindrically with re-
spect to these 16 curves gives 1161 cells (see Figure 1).

Among each cell, the system is either stable or unstable. It
is then sufficient to pick up one couple of parameter values
in each cell and to count the number of real solutions of
the (non parametric) zero-dimensional system {R, C} and
perform the stability test of D(z1, 1) and D(1, z2).

It should be noticed that in some regions of the parameter
space, some cells are very small.

Finally, it turns out that 118 of these regions correspond to
unstable systems. For example the cell containing the couple
(u1 = −.4717912847, u2 = −.5389591122) contains pa-
rameters values that all correspond to unstable systems while
the cell containing the couple (u1 = −.6152602220, u2 =
−.5389591122) contains parameters values that all corre-
spond to stable systems (see Figure 3).

APPENDIX

A. Resultant and Subresultants

A key tool, related to the study of solutions of algebraic
systems, is the Subresultant sequence. We provide below its
definition and some of its properties that are needed for the
description of our algorithms. For a complete overview, the
reader may refer to [7].



Fig. 3. Zoom around a non stable region : u1 = −0.4 . . . − 0.6, u2 =
−0.4 . . .− 0.6 - Parameter space decomposition

D denotes a unique factorization domain and F its fraction
field. Let f = a0 + . . . + anx

n and g = b0 + . . . + bmx
m

be two polynomials with coefficients in D. We shall always
assume in the following that an 6= 0, bn 6= 0 and n ≥ m.

For an integer k such that 0 ≤ k ≤ m, we define the
following D-linear map

ϕk : (u, v) 7−→ uf + vg

such that u, v ∈ D[x] are polynomials with degrees
respectively less or equal than n − k − 1 and m − k − 1
whose the corresponding matrix is given as:

Sk =



an an−1 · · · a0

. . . . . .
an an−1 . . . a0

bm bm−1 . . . b0

. . . . . .
bm bm−1 . . . b0


The matrix S0 is the classical Sylvester matrix associated

to f and g. To be coherent with the degree of polynomials,
we will attach index i− 1 to the i-th column of Sk, so that
the indexes of the columns go from 0 to n+m− k − 1

Definition 2: For j ≤ n + m − k − 1 and 0 ≤ k ≤ m,
let srk,j be the determinant of the submatrix of Sk formed
by the last n+m− 2 k− 1 columns, the column of index j
and all the n+m− 2k rows. The polynomial Sresk(f, g) =
srk,k x

k + . . . + srk,0 is the k-th polynomial subresultant
of f and g, and its leading term srk,k (or simply srk) is
the k-th principal subresultant of f and g. The polynomial
Res(f, g) = sr0 is the resultant of f and g.

Proposition 1: The following properties are equivalent:
• f, g have a common root in F, the alg. closure of F,

• Sres0(f, g) = 0,
• f, g have a non trivial gcd which is proportional to the

non-zero polynomial subresultant of minimal index.

In addition, the subresultant sequence bears an important
specialization property.

Proposition 2: Let D and D′ be unique factorization
domains and φ : D → D′ be a morphism. Let f, g ∈
D[x] and suppose that degree(φ(f)) = degree(f) >
degree(g) = degree(φ(g)). Then φ(Sresi(f, g)) =
Sresi(φ(f), φ(g)),∀i = 0 . . . degree(g).

Consider now two polynomials f =
∑n
i=0 ai(x1) xi2 and

g =
∑m
i=0 bi(x1) xi2 in Q[x1, x2]. The two above properties

leads to the following result.

Proposition 3: For any α such that an(α) and bm(α) do
not both vanish. The first polynomial Sresx2,k(α, x2) (for k
increasing) that does not identically vanish is of degree k
and it is the gcd of f(α, x1) and g(α, x2)(up to a nonzero
constant in the fraction field of D(α)).

Triangular decomposition: Given two bivariate poly-
nomials f, g ∈ Q[x1, x2] such that an(x1) and bm(x1)
are coprime, one can use the above result in order to
compute a triangular description of the solutions of the
system S := {f = g = 0}. Indeed, starting from the
resultant of f and g whose roots α are the x1 coordinates
of the common solutions of S, one can factorize the latter
depending on the degree of the gcd of f(α, x2) and g(α, x2).
For each root α of the resultant, the gcd of f(α, x2) and
g(α, x2) is then given as the specialization at α of the
first non vanishing polynomial subresultant according to
Proposition 3. Consequently, the set of solutions of S, i,e.,
{(α, β) ∈ C2|f(α, β) = g(α, β) = 0} is equal to the set⋃m−1
i=1 {(α, β) ∈ C2|hi(α) = Sresi(α, β) = 0}, where the

polynomial hi(x1) is the factor of the resultant whose any
root α satisfies the property that the degree of the gcd of
f(α, x2) and g(α, x2) is equals to i. See [12] for more details
about this triangular decomposition algorithm.

B. Gröbner bases

A Gröbner basis of an ideal I ⊂ Q[x1, . . . , xn] is a com-
putable generator set of I with good algorithmic properties.
This generator set is defined with respect to a monomial
ordering, say a total ordering on Nn which is compatible
with the multiplication of monomials. The lexicographic
ordering, denoted <lex, is the most well-known ordering:

xα1
1 · · ·x

αn
n <lex x

β1
1 · · ·x

βn
n

⇔ ∃i0 ≤ n ,

{
αi = βi, for i = 1, . . . , i0 − 1,
αi0 < βi0

(6)

However, for efficiency reasons, it is often preferable to
consider the so-called degree orderings such as the degree
reverse lexicographic order (DRL):

xα1
1 · . . . · x

αn
n <DRL x

β1
1 · . . . · x

βn
n ⇔

x
∑

k αk
0 · x−αn

1 · . . . · x−α1
n <lex x

∑
k βk

0 · x−βn1 · . . . · x−β1n .
(7)



Once a monomial ordering > is fixed it induces a natu-
ral notion of leading monomial for any polynomial p in
Q[x1, . . . , xn] which is the greatest monomial of p for >
denoted by LM(p,<) in the sequel.

Whatever the monomial ordering used, the key property of
a Gröbner basis is to induce a canonical reduction function
named normalForm:

Theorem 6: [13] Let G be a Gröbner basis of an
ideal I ⊂ Q[x1, . . . , xn] for a fixed ordering <.
Then, a polynomial p ∈ Q[x1, . . . , xn] belongs to I if
and only if NormalForm(p,G,<) = 0. In particular,
NormalForm(p,G,<) is unique.

We pay a particular attention to Gröbner bases with respect
to elimination or block orderings (defined below) since they
provide a way of eliminate some variables from the system.

Definition 3: Given two monomial orderings <U (w.r.t.
the variables U1, . . . , Ud) and <X (w.r.t. the variables
xd+1, . . . , xn), a block ordering <U,X is defined as follows
: given two monomials m and m′, then m <U,X m′ if
and only if either m|U1=1,...,Ud=1

<X m′|U1=1,...,Ud=1
or

(m|U1=1,...,Ud=1
= m′|U1=1,...,Ud=1

and m|xd+1=1,...,xn=1
<U

m′|xd+1=1,...,xn=1
). We say that such an ordering eliminates

xd+1, . . . , xn.

The lexicographical ordering such x1 < . . . < xn is
a block ordering for any 1 < i < n, which eliminates
xi+1, . . . , xn. However, this ordering is not recommended for
elimination because the computation is usually much harder
than with block orderings such both <U and <X are DRL
orderings.

Two important applications of elimination orderings are
the projections and localizations, which can be summarized
in the following two propositions. To facilitate the illustra-
tion, the following notation is needed. Given any subset V
of Cd (d is an arbitrary positive integer), V is its Zariski
closure which is the smallest subset of Cd containing V . If
V is a constructible set (i.e. it may be defined by equations
and inequations), then V is also the closure for the usual
topology. This will be always the case in the following.

Proposition 4: [24]Let G be a Gröbner basis of an
ideal I ⊂ Q[U,X] w.r.t. a block ordering <U,X , then
G
⋂
Q[U,X] is a Gröbner basis of I

⋂
Q[U,X] w.r.t. <U .

Moreover, if ΠU : Cn −→ Cd denotes the canonical
projection on the coordinates U , then V (I ∩ Q[U ]) =
V (G ∩Q[U ]) = ΠU (V (I)).

Proposition 5: [25] Let I ⊂ Q[X] and T be a new inde-
terminate, then V (I) \ V (f) = V ((I + 〈Tf − 1〉)

⋂
Q[X]).

If G′ ⊂ Q[X,T ] is a Gröbner basis of I + 〈Tf − 1〉 w.r.t
a block ordering <X,T , then G′

⋂
Q[X] is a Gröbner basis

of I : f∞ := (I + 〈Tf − 1〉)
⋂
Q[X] w.r.t. <X . The variety

V (I) \ V (f) and the ideal I : f∞ are usually called the
localization of V (I) and I by f .
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