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We address the problem of solving systems of bivariate polynomials 
with integer coefficients. We first present an algorithm for comput-
ing a separating linear form of such systems, that is a linear 
combination of the variables that takes different values when 
evaluated at distinct (complex) solutions of the system. In other 
words, a separating linear form defines a shear of the coordinate 
system that sends the algebraic system in generic position, in 
the sense that no two distinct solutions are vertically aligned. 
The computation of such linear forms is at the core of most 
algorithms that solve algebraic systems by computing rational 
parameterizations of the solutions and, moreover, the computation 
of a separating linear form is the bottleneck of these algorithms, in 
terms of worst-case bit complexity.
Given two bivariate polynomials of total degree at most d with 
integer coefficients of bitsize at most τ , our algorithm computes 
a separating linear form of bitsize O (log d) in Õ B (d8 + d7τ ) bit 
operations in the worst case, which decreases by a factor d2

the best known complexity for this problem (where Õ refers to 
the complexity where polylogarithmic factors are omitted and O B

refers to the bit complexity).
We then present simple polynomial formulas for the Rational 
Univariate Representations (RURs) of such systems. This yields 
that, given a separating linear form of bitsize O (log d), the 
corresponding RUR can be computed in worst-case bit complexity 
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Õ B (d7 + d6τ ) and that its coefficients have bitsize Õ (d2 + dτ ). 
We show in addition that isolating boxes of the solutions of the 
system can be computed from the RUR with Õ B (d8 + d7τ ) bit 
operations in the worst case. Finally, we show how a RUR can be 
used to evaluate the sign of a bivariate polynomial (of degree at 
most d and bitsize at most τ ) at one real solution of the system in 
Õ B (d8 + d7τ ) bit operations and at all the Θ(d2) real solutions in 
only O (d) times that for one solution.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we address the problem of solving systems of bivariate polynomials with integer 
coefficients and we focus on the worst-case bit complexity of these methods (in the RAM model). We 
consider throughout the paper input polynomials of total degree at most d with integer coefficients 
of bitsize at most τ .

There exist many algorithms, in the literature, for “solving” algebraic systems of equations. Some 
focus on computing “formal solutions” such as rational parameterizations, Gröbner bases, and tri-
angular sets, others focus on computing numerical approximations of the solutions. Such numerical 
approximations can be computed from formal solutions or directly from the input system using nu-
merical methods such as subdivision or homotopy techniques. In this paper, we are interested in 
certified numerical approximations or, more precisely, isolating boxes of the solutions, that is axis-
parallel boxes sets such that every real solution lies in a unique box and conversely.

It should be stressed that formal solutions do not necessarily yield, directly, isolating boxes of 
the solutions. In particular, from a theoretical complexity point of view, it is not proved that the 
knowledge of a triangular system or Gröbner basis of a system always simplifies the isolation of its 
solutions. The difficulty lies in the fact that isolating the solutions of a triangular system essentially 
amounts to isolating the roots of univariate polynomials with algebraic numbers as coefficients, which 
is not trivial when these polynomials have multiple roots. For recent work on this problem, we refer 
to Cheng et al. (2007), Boulier et al. (2009), Strzebonski and Tsigaridas (2011) and references therein. 
This difficulty also explains why it is not an easy task to precisely define what a formal solution of a 
system is, and why usage prevails in what is usually considered to be a formal solution.

One important approach, which can be traced back to Kronecker, for solving a system of polyno-
mials with a finite number of solutions is to compute a rational parameterization of its solutions. 
Such a representation of the (complex) solutions of a system is given by some univariate polynomi-
als and associated rational one-to-one mappings that send the roots of the univariate polynomials to 
the solutions of the system. Such parameterizations enable to reduce computations on the system to 
computations with univariate polynomials and thus ease, for instance, the isolation of the solutions 
or the evaluation of other polynomials at the solutions.

The computation of such parameterizations has been a focus of interest for a long time; see for ex-
ample Alonso et al. (1996), González-Vega and El Kahoui (1996), Rouillier (1999), Giusti et al. (2001), 
Bostan et al. (2003), Diochnos et al. (2009) and references therein. Most algorithms first shear the 
coordinate system, with a linear change of variables, so that the input algebraic system is in generic 
position, that is such that no two solutions are vertically aligned. These algorithms thus need a lin-
ear separating form, that is a linear combination of the coordinates that takes different values when 
evaluated at different solutions of the system. Since a random linear form is separating with prob-
ability one, probabilistic Monte-Carlo algorithms can overlook this issue. In a deterministic setting, 
a separating linear form can easily be computed by considering a direction whose slope is larger than 
twice the ratio of an upper bound on the absolute values of the y-coordinates of the solutions over 
a lower bound on the distance between two consecutive x-coordinates of the solutions (see Cheng et 
al., 2009 for an adaptive version); however, this defines a change of variables that involves integers 
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of bitsize Θ(d3τ ) in the worst case,1 which increases dramatically the bit complexity of the sheared 
polynomials and that of all subsequent computations (see e.g. Proposition 24). Surprisingly, in a deter-
ministic setting, computing a linear separating form of small bitsize is the current bottleneck in the 
computation of parameterizations for bivariate systems, as discussed below, and this is thus a critical 
problem.

For systems of two bivariate polynomials of total degree at most d with integer coefficients of 
bitsize at most τ , the approach with best known worst-case bit complexity for computing a rational 
parameterization was first introduced by González-Vega and El Kahoui (1996) (see also González-Vega 
and Necula, 2002). Their algorithm first computes a separating linear form, then shears accordingly 
the two input polynomials, and computes a rational parameterization using the subresultant sequence 
of the sheared polynomials. Their initial analysis2 of Õ B(d16 +d14τ 2) was improved by Diochnos et al. 
(2009, Lemma 16 and Theorem 19)3 to (i) Õ B(d10 + d9τ ) for computing a separating linear form and 
to (ii) Õ B(d7 +d6τ ) for computing a parameterization. Computing a separating linear form is thus the 
bottleneck of the computation of the rational parameterization. Computing a separating linear form is 
also a (non-strict) bottleneck when considering the additional phase of computing isolating boxes of 
the solutions.

Note that, depending on the context, isolating boxes of the solutions may be sufficient and a 
rational parameterization of the solutions may not be needed. Then, for a system of two bivariate 
polynomials, the best known algorithm has complexity Õ B(d8 + d7τ ) (Emeliyanenko and Sagraloff, 
2012). Furthermore, the isolating boxes can easily be refined because the algorithm isolates the roots 
of the resultants of the two input polynomials with respect to each of the variables.

Main results. Our first main contribution is a new deterministic algorithm of worst-case bit complexity 
Õ B(d8 +d7τ ) for computing a separating linear form of of bitsize O (log d) for a system of two bivari-
ate polynomials of total degree at most d and integer coefficients of bitsize at most τ (Theorem 19). 
As discussed above, this decreases by a factor d2 the best known complexity for this problem.

As a direct consequence, the overall bit complexity of computing a rational parameterization in the 
approach of González-Vega and El Kahoui (1996) decreases to Õ B(d8 + d7τ ) (Diochnos et al., 2009).

We also consider the alternative Rational Univariate Representation (RUR for short) of Rouillier
(1999). Although the parameterization of González-Vega et al. consists in the worst case of Θ(d)

univariate polynomials and their associated rational one-to-one mappings (that send the roots of the 
univariate polynomials to the solutions of the system), a RUR consists of a single univariate polynomial 
and its associated rational one-to-one mappings t �→ (

fx(t)
f1(t) , 

f y(t)
f1(t) ) defined by three polynomials. We 

show that (i) the RUR can be expressed with simple polynomial formulas, that (ii) it has a total bitsize 
which is asymptotically smaller than that of Gonzalez-Vega and El Kahoui by a factor d, and that (iii) it 
can be computed with the same complexity, that is Õ B(d7 +d6τ ) (Theorem 22). Specifically, we prove 
that the four polynomials of the RUR have degree at most d2 and bitsize Õ (d2 + dτ ). Comparatively, 
the bounds on degrees and bitsizes of the polynomials in the parameterization of Gonzalez-Vega 
et al. are the same but, in the worst case, there are Θ(d) univariate polynomials instead of four. 
Moreover, we prove that this bound holds for any ideal containing P and Q (Proposition 28). Note 
that specializing the general result of Rouillier (1999, Proposition 4.1), to two variables gives the 
bounds Õ B(D5 L) for the computation of the RUR (knowing a separating form) and O (D2 L) for the 
bitsize of its coefficients, where D = O (d2) is the dimension of the quotient algebra and L = O (Dτ ′) is 
the maximum bitsize of the coefficients in the multiplication tensor of the algebra, where τ ′ = Õ (d2τ )

is the maximum bitsize of a Gröbner basis of the input system (Lazard, 1983). Note that in the special 

1 The Θ(d3τ ) bound follows from the Cauchy bound and the root separation bound of the resultant of the two input poly-
nomials; see e.g. Yao (2000, §6.2) and Lemmas 3 and 34.

2 In González-Vega and El Kahoui (1996), the complexity of computing a separating form is in Õ B (d16 + d14τ 2) (Lemma 4.4) 
and the complexity of computing a parameterization is in Õ B (d10τ 2) (Lemma 4.1 and proof of Lemma 4.2).

3 The overall bit complexity stated in Diochnos et al. (2009, Theorem 19) is Õ B (d12 +d10τ 2) because it includes the isolation 
of the solutions of the system. Note, however, that the complexity of the isolation phase, and thus of the whole algorithm, 
trivially decreases to Õ B (d10 + d9τ ) using Pan (2002) results on the complexity of isolating the real roots of a univariate 
polynomial.



Y. Bouzidi et al. / Journal of Symbolic Computation 68 (2015) 84–119 87
case of radical systems, specializing the result of Dahan and Schost (2004, Theorem 1) to two variables 
yields a better bound in Õ (d2τ ) for the bitsize of the RUR.

We also show that, given a RUR, isolating boxes of the solutions of the system can be computed 
with Õ B(d8 +d7τ ) bit operations (Proposition 35). This decreases by a factor d2 the best known com-
plexity for this isolation phase of the algorithm (see the discussion above). Globally, this brings the 
overall bit complexity of all three phases of the solving algorithm, that computing (i) a separating 
linear form, (ii) a RUR, and (iii) isolating boxes, to Õ B(d8 + d7τ ), which also improves by a factor d2

the complexity. Note that this complexity matches the state-of-the-art complexity of Emeliyanenko 
and Sagraloff (2012) for computing isolating boxes, but our algorithm computes a rational parameter-
ization as well as isolating boxes.

Finally, we show how a rational parameterization can be used to perform efficiently two important 
operations on the input system. We first show how a RUR can be used to perform efficiently the 
sign_at operation. Given a polynomial F of total degree at most d with integer coefficients of bitsize 
at most τ , we show that the sign of F at one real solution of the system can be computed in Õ B(d8 +
d7τ ) bit operations, while the complexity of computing its sign at all the Θ(d2) solutions of the 
system is only O (d) times that for one real solution (Theorem 40). This improves the best known 
complexities of Õ B(d10 + d9τ ) and Õ B(d12 + d11τ ) for these respective problems; see Diochnos et al. 
(2009, Th. 14 and Cor. 24) with the improvement of Sagraloff (2012) for the root isolation. Similar 
to the sign_at operation, we show that a RUR can be split in two parameterizations such that F
vanishes at all the solutions of one of them and at none of the other. We also show that these 
rational parameterizations can be transformed back into RURs in order to reduce their total bitsize, 
within the same complexity, that is, Õ B(d8 + d7τ ) (Proposition 44).

The paper is organized as follows. We introduce notation and recall classical material in Section 2. 
We present our results on separating linear forms in Section 3, those on the computation and bitsize 
of RURs in Section 4, and address in Section 5 the applications of the RURs on the isolation of real 
solutions, sign_at operations, and over-constrained systems.

2. Notation and preliminaries

We introduce notation and recall classical material about subresultant sequences.
The bitsize of an integer p is the number of bits needed to represent it, that is �log p� + 1 (log

stands for the logarithm in base 2). For rational numbers, we refer to the bitsize as to the maxi-
mum bitsize of its numerator and denominator. The bitsize of a polynomial with integer or rational 
coefficients is the maximum bitsize of its coefficients. We refer to τγ as the bitsize of a polynomial, 
rational or integer γ . As mentioned earlier, O B refers to the bit complexity and Õ and Õ B refer to 
complexities where polylogarithmic factors are omitted.

In the following, μ is a prime number and we denote by Zμ the quotient Z/μZ. We denote by 
φμ: Z → Zμ the reduction modulo μ, and extend this definition to the reduction of polynomials with 
integer coefficients. We denote by D a unique factorization domain, typically Z[X, Y ], Z[X], Zμ[X], Z
or Zμ . We also denote by F a field, typically Q, C, or Zμ.

For any polynomial P ∈D[X], let Lc X (P ) denote its leading coefficient with respect to the variable 
X , dX (P ) its degree with respect to X , and P its squarefree part. The ideal generated by two polyno-
mials P and Q is denoted 〈P , Q 〉, and the affine variety of an ideal I is denoted by V (I); in other 
words, V (I) is the set of distinct solutions of the system {P , Q }. The solutions are always considered 
in the algebraic closure of the fraction of field of D and the number of distinct solutions is denoted 
by #V (I). For a point σ ∈ V (I), μI (σ ) denotes the multiplicity of σ in I . For simplicity, we refer 
indifferently to the ideal 〈P , Q 〉 and to the system {P , Q }.

We finally introduce the following notation which is extensively used throughout the paper. Given 
the two input polynomials P and Q , we consider the “generic” change of variables X = T − SY , and 
define the “sheared” polynomials P (T − SY, Y ), Q (T − SY, Y ), and their resultant with respect to Y ,

R(T , S) = ResY
(

P (T − SY, Y ), Q (T − SY, Y )
)
. (1)

The complexity bounds on the degree, bitsize and computation of these polynomials are analyzed 
at the end of this section in Lemma 7. Let LR(S) be the leading coefficient of R(T , S) seen as a 
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polynomial in T . Let L P (S) and L Q (S) be the leading coefficients of P (T − SY, Y ) and Q (T − SY, Y ), 
seen as polynomials in Y ; it is straightforward that these leading coefficients do not depend on T . In 
other words:

L P (S) = LcY
(

P (T − SY, Y )
)
, L Q (S) = LcY

(
Q (T − SY, Y )

)
, LR(S) = LcT

(
R(T , S)

)
. (2)

2.1. Subresultant sequences

We recall here the definition of subresultant sequences and some related properties. Note that 
we only use subresultants in Section 3.4.1 in which we recall a classical triangular decomposition 
algorithm.

We first recall the concept of polynomial determinant of a matrix which is used in the definition of 
subresultants. Let M be an m × n matrix with m � n and Mi be the square submatrix of M consisting 
of the first m − 1 columns and the i-th column of M , for i = m, . . . , n. The polynomial determinant of 
M is the polynomial defined as det(Mm)Y n−m + det(Mm+1)Y n−(m+1) + . . . + det(Mn).

Let P = ∑p
i=0 ai Y i and Q = ∑q

i=0 bi Y i be two polynomials in D[Y ] and assume without loss of 
generality that p � q. The Sylvester matrix of P and Q , Sylv(P , Q ) is the (p +q)-square matrix whose 
rows are Y q−1 P , . . . , P , Y p−1 Q , . . . , Q considered as vectors in the basis Y p+q−1, . . . , Y , 1.

Sylv(P , Q ) =

p+q columns︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap ap−1 · · · · · · a0
ap ap−1 · · · · · · a0

. . .
. . .

ap ap−1 · · · · · · a0
bq bq−1 · · · b0

bq bq−1 · · · b0

. . .
. . .

. . .
. . .

bq bq−1 . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭q rows

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ p rows

Definition 1. (See El Kahoui, 2003, §3.) For i = 0, . . . , min(q, p − 1), let Sylvi(P , Q ) be the (p + q −
2i) × (p + q − i) matrix obtained from Sylv(P , Q ) by deleting the i last rows of the coefficients of P , 
the i last rows of the coefficients of Q , and the i last columns.

For i = 0, . . . , min(q, p −1), the i-th polynomial subresultant of P and Q , denoted by SresY ,i(P , Q )

is the polynomial determinant of Sylvi(P , Q ). When q = p, the q-th polynomial subresultant of P and 
Q is b−1

q Q .4

SresY ,i(P , Q ) has degree at most i in Y , and the coefficient of its monomial of degree i in Y , 
denoted by sresY ,i(P , Q ), is called the i-th principal subresultant coefficient. Note that SresY ,0(P , Q ) =
sresY ,0(P , Q ) is the resultant of P and Q with respect to Y , which we also denote by ResY (P , Q ). 
Furthermore, the first (with respect to increasing i) nonzero subresultant of P , Q ∈ D[Y ] is equal 
to their gcd in FD[Y ], up to a multiplicative factor in FD , where FD is the fraction field of D (e.g., 
if D = Z[X], then FD = Q(X), the field of fractions of polynomials in Q[X]); more generally, the 
subresultants of P and Q are equal to either 0 or to polynomials in the remainder sequence of P and 
Q in Euclid’s algorithm (up to multiplicative factors in D) (Basu et al., 2006, §8.3.3 and Cor. 8.32).5

4 It can be observed that, when p > q, the q-th subresultant is equal to bp−q−1
q Q , however it is not defined when p = q. In 

this case, following El Kahoui, we extend the definition to b−1
q Q assuming that the domain D is integral, which is the case in 

this paper. Note that it is important to define the q-th subresultant to be a multiple of Q so that Lemma 2 holds when Q (α, Y )

is of degree q and divides P (α, Y ) for some α.
5 For efficiency, the computation of subresultant sequences are usually performed by computing the polynomial remainder 

sequences using some variants of Euclid algorithm instead of the aforementioned determinants.
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We state below a fundamental property of subresultants which is instrumental in the triangular 
decomposition algorithm used in Section 3.4.1. For clarity, we state this property for bivariate poly-
nomials P = ∑p

i=0 ai Y i and Q = ∑q
i=0 bi Y i in D[X, Y ], with p � q. Note that this property is often 

stated with a stronger assumption that is that none of the leading terms ap(α) and bq(α) vanishes. 
This property is a direct consequence of the specialization property of subresultants and of the gap 
structure theorem; see for instance El Kahoui (2003, Lemmas 2.3, 3.1 and Corollary 5.1).

Lemma 2. For any α such that ap(α) and bq(α) do not both vanish, the first SresY ,k(P , Q )(α, Y ) (for k
increasing) that does not identically vanish is of degree k and it is the gcd of P (α, Y ) and Q (α, Y ) (up to a 
nonzero constant in the fraction field of D(α)).

2.2. Complexity

We recall complexity results, using fast algorithms, on subresultants and gcd computations. We 
also analyze complexities related to the evaluation of a univariate polynomial at a given rational and 
the computation of the “sheared” polynomials and their resultant.

Lemma 3. (See Basu et al., 2006, Proposition 8.46, Reischert, 1997, §8, Algorithm 7.3.) Let P and Q in 
Z[X1, . . . , Xn][Y ] of coefficient bitsize τ such that their degrees in Y are bounded by dY and their degrees 
in the other variables are bounded by d.

• The coefficients of SresY ,i(P , Q ) have bitsize in Õ (dY τ ).
• The degree in X j of SresY ,i(P , Q ) is at most 2d(dY − i).

• Any subresultants SresY ,i(P , Q ) can be computed in ̃O (dndn+1
Y ) arithmetic operations, and ̃O B(dndn+2

Y τ )

bit operations.

In the sequel, we will often consider the gcd of two univariate polynomials P and Q and the 
gcd-free part of P with respect to Q , that is, the divisor D of P such that P = gcd(P , Q )D . Note that, 
when Q = P ′ , the latter is the squarefree part P , provided that the characteristic of the coefficients 
ring is zero or sufficiently large (e.g., larger than the degree of P ).

Lemma 4. (See Basu et al., 2006, Corollary 10.12 and Remark 10.19.6) Let P and Q in F[X] of degree at 
most d. gcd(P , Q ) or the gcd-free part of P with respect to Q can be computed with Õ (d) operations in F. If 
P , Q ∈ Z[X] have degree at most d and bitsize at most τ , a gcd in Z[X] with coefficients of bitsize in O (d + τ )

can be computed with Õ B(d2τ ) bit operations. The same bounds hold for the bitsize and the computation of 
the gcd-free part of P with respect to Q .

The following is a refinement of the previous lemma in the case of two polynomials with different 
degrees and bitsizes. It is a straightforward adaptation of Lickteig and Roy (2001, Corollary 5.2) and it 
is only used in Section 5.3.

6 Basu et al. (2006, Corollary 10.12) states that P and Q have a gcd in Z[X] with bitsize in O (d + τ ). Basu et al. (2006, 
Remark 10.19) claims that a gcd and gcd-free parts of P and Q can be computed in Õ B (d2τ ) bit operations. This remark 
refers to Lickteig and Roy (2001, Corollary 5.2) which proves that the last nonzero Sylvester–Habicht polynomial, which is a 
gcd of P and Q (Basu et al., 2006, Corollary 8.32), can be computed in Õ B (d2τ ) bit operations. Moreover, the corollary proves 
that the Sylvester–Habicht transition matrices can be computed within the same bit complexity, which gives the cofactors of 
P and Q in the sequence of the Sylvester–Habicht polynomials (i.e., Ui , V i ∈ Z[X] such that Ui P + V i Q is equal to the i-th 
Sylvester–Habicht polynomials). The gcd-free part of P with respect to Q and conversely are the cofactors corresponding to 
the one-after-last nonzero Sylvester–Habicht polynomial (Basu et al., 2006, Proposition 10.14), and can thus be computed in 
Õ B (d2τ ) bit operations. The gcd (resp. gcd-free part) of P and Q computed this way is in Z[X], thus dividing it by the gcd of 
its coefficients yields a gcd (resp. gcd-free part) of P and Q of smallest bitsize in Z[X] which is known to be in O (d + τ ). The 
gcd of the coefficients, which are of bitsize Õ (dτ ) (Basu et al., 2006, Proposition 8.46), follows from O (d) gcds of two integers 
of bitsize Õ (dτ ) and each such gcd can be computed with Õ B (dτ ) bit operations (Yap, 2000, §2.A.6). Therefore, a gcd (resp. 
gcd-free part) of P and Q of bitsize O (d + τ ) can be computed in Õ B (d2τ ) bit complexity.
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Lemma 5. (See Lickteig and Roy, 2001.7) Let P and Q be two polynomials in Z[X] of degrees p and q and of 
bitsizes τP and τQ , respectively. A gcd of P and Q of bitsize O (min(p +τP , q +τQ )) in Z[X], can be computed 
in Õ B(max(p, q)(pτQ + qτP )) bit operations. A gcd-free part of P with respect to Q , of bitsize O (p + τP ) in 
Z[X], can be computed in the same bit complexity.

We now state a bound on the complexity of evaluating univariate polynomials; although this 
bound is ought to be known and straightforward in a divide-and-conquer scheme, we were not able 
to find a proper reference for it; see Bodrato and Zanoni (2011) and Hart and Novocin (2011) for 
recent references on the subject. For completeness, we provide a short and simple proof.

Lemma 6. Let a be a rational of bitsize τa, the evaluation at a of a univariate polynomial f of degree d and 
rational coefficients of bitsize τ can be done in Õ B(d(τ + τa)) bit operations, while the value f (a) has bitsize 
in O (d(τ + τa)). In addition, when f has integer coefficients or the lcm of the denominators of its coefficients 
has bitsize in O (τ ), then f (a) has bitsize in O (τ + dτa).

Proof. The complexity Õ B(d(τ + τa)) can easily be obtained by recursively evaluating the polynomial ∑d
i=0 ai xi as 

∑d/2
i=0 ai xi + xd/2 ∑d/2

i=1 ai+d/2xi . Evaluating xd/2 can be done in O B(dτa log3 dτa) time by 
recursively computing log d

2 multiplications of rational numbers of bitsize at most dτa , each of which 
can be done in O B(dτa log dτa log log dτa) time by Schönhage–Strassen algorithm (see e.g. von zur 
Gathen and Gerhard, 2003, Theorem 8.24). The lcm of the denominators of the ai has bitsize at most 
O (dτ ) thus 

∑d/2
i=0 ai+d/2ai has bitsize at most O (d(τ + τa)), hence its multiplication by ad/2 can be 

done in O B((d(τ + τa)) log2(d(τ + τa))) time. Hence, the total complexity of evaluating f is at most 
T (d, τ , τa) = 2T (d/2, τ , τa) + O B((d(τ + τa)) log3(d(τ + τa))) which is in8 O B(d(τ + τa) log4 d(τ + τa))

that is in Õ B(d(τ + τa)). As mentioned above f (a) has bitsize in O (d(τ + τa)), but when when f has 
integer coefficients or the lcm of the denominators of its coefficients has bitsize in O (τ ), then f (a) is 
a sum of d + 1 terms each of bitsize in O (τ + dτa), thus f (a) also has bitsize in O (τ + dτa). �
Lemma 7. Let P and Q in Z[X, Y ] be of total degree at most d and maximum bitsize τ . The sheared polyno-
mials P (T − SY, Y ) and Q (T − SY, Y ) can be expanded in Õ B(d4 + d3τ ) and their bitsizes are in Õ(d + τ ). 
The resultant R(T , S) can be computed in ̃O B(d7 +d6τ ) bit operations and ̃O (d5) arithmetic operations in Z; 
its degree is at most 2d2 in each variable and its bitsize is in Õ(d2 + dτ ).

Proof. Writing P as 
∑d

i=0 pi(Y )Xi , expending the substitution of X by T − SY needs the computation 
of the successive powers (T − SY)i for i from 1 to d. The binomial formula shows that each poly-
nomial (T − SY)i is the sum of i + 1 monomials, with coefficients of bitsize in O (i log i). Using the 
recursion formula (T − SY)i = (T − SY)i−1(T − SY), given the polynomial (T − SY)i−1, the computation 

7 The algorithm in Lickteig and Roy (2001) uses the well-known half-gcd approach to compute any polynomial in the 
Sylvester–Habicht and cofactors sequence in a softly-linear number of arithmetic operations, and it exploits Hadamard’s bound 
on determinants to bound the size of intermediate coefficients. When the two input polynomials have different degrees and 
bitsizes, Hadamard’s bound reads as Õ (pτQ + qτP ) instead of simply Õ (dτ ) and, similarly as in Lemma 4, the algorithm in 
Lickteig and Roy (2001) yields a gcd and gcd-free parts of P and Q in Õ B (max(p, q)(pτQ + qτP )) bit operations. Furthermore, 
the gcd and gcd-free parts computed this way are in Z[X] with coefficients of bitsize Õ (pτQ + qτP ), thus, dividing them by 
the gcd of their coefficients can be done with Õ B (max(p, q)(pτQ + qτP )) bit operations and yields a gcd and gcd-free parts in 
Z[X] with minimal bitsize, which is as claimed by Mignotte’s bound; see e.g. Basu et al. (2006, Corollary 10.12).

8 Indeed,

T (d, τ , τa) = 2i+1 T

(
d

2i+1
, τ , τa

)
+ O B

((
d(τ + τa)

)
log3 d(τ + τa) + · · · + 2i

(
d(τ + τa)

2i
log3 d(τ + τa)

2i

))

� O B

(
d(τ + τa)

log d∑
i=0

log3 d(τ + τa)

2i

)
� O B

(
d(τ + τa) log4(dτ + τa)

)
.
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of (T − SY)i requires 2i multiplications of coefficients having bitsize in O (i log i), which can be done 
in Õ B(i2 log i) bit operations. The complexity of computing all the powers is thus in Õ B(d3 log d). The 
second step is to multiply pi(Y ) by (T − SY)i for i = 1, . . . , d. Each polynomial multiplication can be 
done with O (d2) multiplications of integers of bitsize in O (τ ) or in O (d log d), and thus it can be 
done in Õ B(d2(τ + d log d)) bit operations and yields polynomials of bitsize O (τ + d log d). For the d
multiplications the total cost is in Õ B(d3(τ + d log d)). Consequently the computation of P (T − SY, Y )

and Q (T − SY, Y ) can be done in Õ B(d3(τ + d)) bit operations and these polynomials have bitsize in 
Õ (τ +d). In addition, since P (T − SY, Y ) and Q (T − SY, Y ) are trivariate polynomials of partial degree 
in all variables bounded by d, Lemma 3 implies the claims on R(T , S). �
3. Separating linear form

Let P and Q be two bivariate polynomials of total degree bounded by d and integer coefficients of 
maximum bitsize τ . Let I = 〈P , Q 〉 be the ideal they define and suppose that I is zero-dimensional. 
The goal is to find a linear form T = X + aY , with a ∈ Z, that separates the solutions of I .9 By abuse 
of notation, some complexity Õ B(dk) may refer to a complexity in which polylogarithmic factors in d
and in τ are omitted. Iμ = 〈Pμ, Q μ〉 denotes the ideal generated by Pμ = φμ(P ) and Q μ = φμ(Q ). 
Similarly as in Eq. (1), we define Rμ(T , S) as the resultant of Pμ(T − SY, Y ) and Q μ(T − SY, Y ) with 
respect to Y , and we define L Pμ(S) and L Q μ(S) similarly as in (2).

3.1. Overview

We first outline a classical algorithm which is essentially the same as those proposed, for in-
stance, in Diochnos et al. (2009, Lemma 16) and Kerber and Sagraloff (2012, Theorem 24)10 and 
whose complexity, in Õ B(d10 + d9τ ), is the best known so far for this problem. This algorithm serves 
two purposes: it gives some insight on the more involved Õ B(d8 + d7τ )-time algorithm that follows 
and it will be used in that algorithm but over Z/μZ instead of Z.

Known ÕB(d10 + d9τ )-time algorithm for computing a separating linear form. The idea is to work with 
a “generic” linear form T = X + SY , where S is an indeterminate, and find conditions such that 
the specialization of S by an integer a gives a separating form. We thus consider P (T − SY, Y ) and 
Q (T − SY, Y ), the “generic” sheared polynomials associated to P and Q , and R(T , S) their resultant 
with respect to Y . This polynomial has been extensively used and defined in several context; see for 
instance the related u-resultant (Van der Waerden, 1930).

It is known that, in a set S of d4 integers, there exists at least one integer a such that X + aY is a 
separating form for I since I has at most d2 solutions which define at most 

(d2

2

)
directions in which 

two solutions are aligned. Hence, a separating form can be found by computing, for every a in S , the 
degree of the squarefree part of R(T ,a) and by choosing one a for which this degree is maximum. 
Indeed, for any (possibly non-separating) linear form X + aY , the number of distinct roots of R(T , a), 
which is the degree of its squarefree part, is always smaller than or equal to the number of distinct 
solutions of I , and equality is attained when the linear form X + aY is separating (Lemma 10). The 
complexity of this algorithm is in Õ B(d10 + d9τ ) because, for d4 values of a, the polynomial R(T , a)

can be shown to be of degree O (d2) and bitsize Õ (d2 + dτ ), and its squarefree part can be computed 
in Õ B(d6 + d5τ ) time.

ÕB(d8 + d7τ )-time algorithm for computing a separating linear form. To reduce the complexity of the 
search for a separating form, one can first consider to perform naively the above algorithm on the 
system Iμ = 〈P mod μ, Q mod μ〉 in Zμ = Z/μZ, where μ is a prime number upper bounded by 

9 Note that the assumption that I = 〈P , Q 〉 is zero-dimensional or equivalently that P and Q are coprime is implicitly tested 
during Algorithm 4 because they are coprime if and only if R(T , S) does not identically vanish.
10 Kerber and Sagraloff (2012, Theorem 24) states a complexity of Õ B (d9τ ) instead of Õ B (d10 + d9τ ) because the fact that 

sheared polynomials have bitsize Õ (d + τ ) (see Lemma 7) instead of Õ (τ ) had been missed. This was corrected in the version 
in the arXiv (see http://arxiv.org/abs/1104.1510).

http://arxiv.org/abs/1104.1510
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some polynomial in d and τ (so that the bit complexity of arithmetic operations in Zμ is polylog-
arithmic in d and τ ). The resultant Rμ(T , S) of P (X − SY, Y ) mod μ and Q (X − SY, Y ) mod μ with 
respect to Y can be computed in Õ B(d6 + d5τ ) bit operations and, since its degree is at most 2d2

in each variable, evaluating it at S = a in Zμ can be easily done in Õ B(d4) bit operations. Then, the 
computation of its squarefree part does not suffer anymore from the coefficient growth, and it be-
comes softly linear in its degree, that is Õ B(d2). Considering d4 choices of a, we get an algorithm that 
computes a separating form for Iμ in Õ B(d8) time in Zμ . However, a serious problem remains, that is 
to ensure that a separating form for Iμ is also a separating form for I . This issue requires to develop 
a more subtle algorithm.

We first show, in Section 3.2, a critical property (Proposition 9) which states that a separating 
linear form over Zμ is also separating over Z when μ is a lucky prime number, which is, essentially, 
a prime such that the number of solutions of 〈P , Q 〉 is the same over Z and over Zμ . We then show 
in Sections 3.3 to 3.5 how to compute such a lucky prime number. We do that by first proving in 
Section 3.3 that, under mild conditions on μ, the number of solutions over Zμ is always less than 
or equal to the number of solutions over Z (Proposition 12) and then by computing a bound on the 
number of unlucky primes (Proposition 13). Computing a lucky prime can then be done by choosing a 
μ that maximizes the number of solutions over Zμ among a set of primes of cardinality Θ̃(d4 +d3τ ). 
For that purpose, we present in Section 3.4 a new algorithm, of independent interest, for computing in 
Õ (d4) arithmetic operations the number of distinct solutions of the system Iμ in Zμ; this algorithm 
is based on a classical triangular decomposition. This yields, in Section 3.5, a Õ B(d8 + d7τ )-time 
algorithm for computing a lucky prime μ in Õ (d4 + d3τ ). Now, μ is fixed, and we can apply the 
algorithm outlined above for computing a separating form for Iμ in Zμ in Õ B(d8) time (Section 3.6). 
This form, which is also separating for I , is thus obtained with a total bit complexity of Õ B(d8 + d7τ )

(Theorem 19).

3.2. Separating linear form over Zμ versus Z

We first introduce the notion of lucky prime numbers μ which are, roughly speaking, primes μ for 
which the number of distinct solutions of 〈P , Q 〉 does not change when considering the polynomials 
modulo μ. Recall that the solutions are considered over the algebraic closure of the fraction field, Zμ

or Q, of the ring of coefficients. We then show the critical property that, if a linear form is separating 
modulo such a μ, then it is also separating over Z.

Definition 8. A prime number μ is said to be lucky for an ideal I = 〈P , Q 〉 if it is larger than 2d4 and 
satisfies

φμ

(
L P (S)

)
φμ

(
L Q (S)

) 
≡ 0 and #V (I) = #V (Iμ).

Note that we consider μ in Ω(d4) in Definition 8 because, in Algorithm 4, we want to ensure 
that there exists, for Iμ (resp. I), a separating form X + aY with a ∈ Zμ (resp. 0 � a < μ in Z). The 
constant 2 in the bound 2d4 is an overestimate, which simplifies the proof of Proposition 12.

Proposition 9. Let μ be a lucky prime for the ideal I = 〈P , Q 〉 and let a < μ be an integer11 such that 
φμ(L P (a)) φμ(L Q (a)) 
= 0. If X + aY separates V (Iμ), it also separates V (I).

The key idea of the proof of Proposition 9, as well as Propositions 12 and 13, is to prove the 
following inequalities (under the hypothesis that various leading terms do not vanish)

#V (Iμ) � dT
(

Rμ(T ,a)
)
� dT

(
R(T ,a)

)
� #V (I) (3)

11 We assume a < μ for clarity so that the linear form X + aY is “identical” in Z and in Zμ . This hypothesis is however not 
needed and we actually prove that if X + φμ(a)Y separates V (Iμ), then X + aY separates V (I).
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and argue that the first (resp. last) one is an equality if X + aY separates V (Iμ) (resp. V (I)). We 
establish these claims in Lemmas 10 and 11. As mentioned in Section 3.1, Lemma 10 is the key 
property in the classical algorithm for computing a separating form for I , which algorithm we will 
use over Zμ to compute a separating form for Iμ in Section 3.6. For completeness, we outline its 
proof; see Diochnos et al. (2009, Lemma 16) or Basu et al. (2006, Proposition 11.23) for details. Recall 
that P and Q are assumed to be coprime but not Pμ and Q μ .

Lemma 10. If a ∈ Z is such that L P (a) L Q (a) 
= 0 then dT (R(T ,a)) � #V (I) and they are equal if and only 
if X + aY separates V (I). The same holds over Zμ , that is for Pμ , Q μ , Rμ and Iμ , provided Pμ and Q μ are 
coprime.

Proof. Since L P (a) L Q (a) 
= 0, the resultant R(T , S) can be specialized at S = a, that is R(T , a) =
ResY (P (T − aY , Y ), Q (T − aY , Y )). On the other hand, the sheared polynomials P (T − aY , Y ) and 
Q (T − aY , Y ) are coprime (since P and Q are coprime) and since L P (a)L Q (a) 
= 0, they have no 
common solution at infinity in the Y -direction. Thus the roots of their resultant with respect to Y are 
the T -coordinates of the (affine) solutions of Ia = 〈P (T − aY , Y ), Q (T − aY , Y )〉; see for instance Cox 
et al. (1997, §3.6 Proposition 3). Hence, dT (R(T ,a)) � #V (Ia) = #V (I). Moreover, if X + aY separates 
V (I), T = X +aY takes distinct values for every solution in V (I), and since these values of T are roots 
of R(T , a), dT (R(T ,a)) � #V (I) and thus they are equal. Conversely, if dT (R(T ,a)) = #V (I), R(T , a)

admits #V (I) distinct roots T = X + aY which means that X + aY separates all the solutions of V (I). 
The same argument holds over Zμ . �

The following lemma states a rather standard properties. For completeness and readers’ conve-
nience, we provide a proof for which we could not find accurate references.

Lemma 11. Let μ be a prime and a be an integer such that φμ(L P (a)) φμ(L Q (a)) 
= 0, then dT (Rμ(T ,a)) �
dT (R(T ,a)).

Proof. By hypothesis, φμ(L P (S)) and φμ(L Q (S)) do not identically vanish, thus we can specialize the 
resultant R by φμ , that is φμ(R(T , S)) = ResY (φμ(P (T − SY, Y )), φμ(Q (T − SY, Y ))) (Basu et al., 2006, 
Proposition 4.20). Hence, φμ(R(T , S)) = Rμ(T , S). The evaluation at S = a and the reduction modulo 
μ commute (in Zμ), thus φμ(R(T , a)) = Rμ(T , a) in Zμ[T ].

We now show that for any polynomial f ∈ Z[X] and prime μ, deg(φμ( f )) � deg( f ), which will 
imply the lemma.

Let f = c
∏

i f mi
i be the squarefree decomposition of f in Z[X]. Considering its reduction mod-

ulo μ, we obtain that φμ( f ) = φμ(c) 
∏

i φμ( f i)
mi . Hence, deg(φμ( f )) �

∑
i deg(φμ( f i)). Further-

more, since deg(φμ( f i)) � deg( f i), we have that deg(φμ( f )) �
∑

i deg( f i). On the other hand, since 
f = c

∏
i f mi

i is the squarefree decomposition of f , we have deg( f ) = ∑
i deg( f i) so deg(φμ( f )) �

deg( f ). �
Proof of Proposition 9. If μ is a lucky prime, then by definition #V (I) = #V (Iμ), thus Iμ is zero-
dimensional since I is. Thus, by Lemmas 10 and 11, if μ is a lucky prime and a is an integer such 
that X + aY separates V (Iμ) and φμ(L P (a)) φμ(L Q (a)) 
= 0, then

#V (Iμ) = dT
(

Rμ(T ,a)
)
� dT

(
R(T ,a)

)
� #V (I).

Since μ is lucky, #V (Iμ) = #V (I) thus dT (R(T ,a)) = #V (I) and by Lemma 10, X + aY sepa-
rates V (I). �
3.3. Number of solutions over Zμ versus Z

As shown in Proposition 9, the knowledge of a lucky prime permits to search for separating linear 
forms over Zμ rather than over Z. We prove here two propositions that are critical for computing 
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a lucky prime, which state that the number of solutions of Iμ = 〈Pμ, Q μ〉 is always at most that of 
I = 〈P , Q 〉 and give a bound on the number of unlucky primes.

Proposition 12. Let I = 〈P , Q 〉 be a zero-dimensional ideal in Z[X, Y ]. If a prime μ is larger12 than 2d4 such 
that Iμ is zero-dimensional and φμ(L P (S)) φμ(L Q (S)) 
≡ 0 then #V (Iμ) � #V (I).

Proof. Let μ be a prime that satisfies the hypotheses of the proposition. We also consider an integer 
a < μ such that φμ(L P (a)) φμ(L Q (a)) 
= 0 and such that the linear form X + aY is separating for Iμ . 
Such an integer exists because (i) φμ(L P (S)) and φμ(L Q (S)) are not identically zero by hypothesis 
and they have degree at most d and, since Iμ is zero dimensional, (ii) Iμ has at most d2 solutions 
which define at most 

(d2

2

)
directions in which two solutions are aligned. Since 2d + (d2

2

)
< 2d4 (for 

d � 2), there exists such an integer a � 2d4 < μ. With such an a, we can apply Lemmas 10 and 11
which imply that #V (Iμ) = dT (Rμ(T ,a)) � dT (R(T ,a)) � #V (I). �

Next, we bound the number of primes that are unlucky for the ideal 〈P , Q 〉.

Proposition 13. An upper bound on the number of unlucky primes for the ideal 〈P , Q 〉 can be explicitly 
computed in terms of d and τ , and this bound is in Õ (d4 + d3τ ).

Proof. According to Definition 8, a prime μ is unlucky if it is smaller than 2d4, if φμ(L P (S))

φμ(L Q (S)) 
≡ 0, or if #V (I) 
= #V (Iμ). In the following, we consider μ > 2d4. We first determine 
some conditions on μ that ensure that #V (I) = #V (Iμ), and we then bound the number of μ that 
do not satisfy these conditions. As we will see, under these conditions, L P (S) and L Q (S) do not vanish 
modulo μ and thus this constraint is redundant.

The first part of the proof is similar in spirit to that of Proposition 12 in which we first fixed a 
prime μ and then specialized the polynomials at S = a such that the form X + aY was separating 
for Iμ . Here, we first choose a such that X + aY is separating for I . With some conditions on μ, 
Lemmas 10 and 11 imply Eq. (4) and we determine some more conditions on μ such that the middle 
inequality of (4) is an equality. We thus get #V (Iμ) � #V (I) which is the converse of that of Propo-
sition 12 and thus #V (Iμ) = #V (I). In the second part of the proof, we bound the number of μ that 
violate the conditions we considered.

Prime numbers such that #V (I) 
= #V (Iμ). Let a be such that the form X + aY separates V (I) and 
L P (a) L Q (a) LR(a) 
= 0.13 Similarly as in the proof of Proposition 12, since LR(S) has degree at most 
2d2 (Lemma 3) and 2d + 2d2 + (d2

2

)
< 2d4 (for d � 2), we can choose a � 2d4.

We consider any prime μ > 2d4 such that φμ(L P (a)) φμ(L Q (a)) φμ(LR(a)) 
= 0. By Lemmas 10 and 11, 
we have

#V (Iμ) � dT
(

Rμ(T ,a)
)
� dT

(
R(T ,a)

) = #V (I), (4)

since the first inequality trivially holds when Iμ is not zero-dimensional and since X + aY separates 
V (I).

Now, dT (R(T ,a)) = dT (R(T , a)) − dT (gcd(R(T , a), R ′(T , a))), and similarly for Rμ(T , a). The lead-
ing coefficient of R(T , S) with respect to T is LR(S), and since it does not vanish at S = a, LR(a)

is the leading coefficient of R(T , a). In addition, since φμ(L P (a)) φμ(L Q (a)) 
= 0, we can special-
ize the resultant R by φμ , thus φμ(R(T , a)) = ResY (φμ(P (T − aY , Y )), φμ(Q (T − aY , Y ))) (Basu et 
al., 2006, Proposition 4.20). Hence, φμ(R(T , a)) = Rμ(T , a) and the hypothesis φμ(LR(a)) 
= 0 im-
plies that Rμ(T , a) and R(T , a) have the same degree. It follows that, if μ is such that the degree of 
gcd(R(T , a), R ′(T , a)) does not change when R(T , a) and R ′(T , a) are reduced modulo μ, we have

#V (Iμ) � dT
(

Rμ(T ,a)
) = dT

(
R(T ,a)

) = #V (I).

12 The constraint μ > 2d4 could be removed by proving that #V (Iμ) = dT (Rμ(T , S)) � dT (R(T , S)) = #V (I) without special-
izing S at a (which requires generalizing Lemma 11 to bivariate polynomials).
13 It can be shown that L P (a) L Q (a) 
= 0 implies LR (a) 
= 0 (see Lemma 27) but this property does not simplify the proof.
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Since φμ(R(T , a)) = Rμ(T , a) and φμ(LR(a)) 
= 0, the resultant Rμ(T , a) does not identically vanish 
and thus Iμ is zero-dimensional. Furthermore, since μ > 2d4 and φμ(L P (a))φμ(L Q (a)) 
= 0, we can 
apply Proposition 12 which yields that #V (Iμ) � #V (I) and thus #V (Iμ) = #V (I).

Therefore, the primes μ such that #V (Iμ) 
= #V (I) are among those such that μ � 2d4, or L P (a), 
L Q (a) or LR(a) vanishes modulo μ or such that the degree of gcd(R(T , a), R ′(T , a)) changes when 
R(T , a) and R ′(T , a) are reduced modulo μ. Note that if L P (a) and L Q (a) do not vanish modulo μ, 
then L P (S) and L Q (S) do not identically vanish modulo μ.

Bounding the number of prime divisors of L P (a), L Q (a) or LR(a). The number of prime divisors of an 
integer z is bounded by its bitsize. Indeed, its bitsize is �log z� + 1 and its factorization into w (pos-
sibly identical) prime numbers directly yields that 2w �

∏w
i=1 zi = z = 2log z � 2�log z�+1. We can thus 

bound the number of prime divisors by bounding the bitsize of L P (a), L Q (a) and LR(a). We start by 
bounding the bitsize of L P (S), L Q (S) and LR(S).

Each coefficient of P (T −SY, Y ) has bitsize at most τ ′ = τ +d log d + log(d +1) +1. Indeed, (T −SY)i

is a sum of i + 1 monomials whose coefficients are binomials 
(i�d

j

)
< dd . The claim follows since 

each coefficient of P (T − SY, Y ) is the sum of at most d + 1 such binomials, each multiplied by a 
coefficient of P (X, Y ) which has bitsize at most τ . We get the same bound for the coefficients of 
Q (T − SY, Y ) and thus for L P (S) and L Q (S) as well. Concerning LR(S), we have that R(T , S) is the 
resultant of P (T − SY, Y ) and Q (T − SY, Y ) thus, by Lemma 3, its coefficients are of bitsize Õ (dτ ′). In 
fact, an upper bound can be explicitly computed using, for instance, the bound of Basu et al. (2006, 
Theorem 8.46) which implies that the resultant of two trivariate polynomials of total degree d′ and 
bitsize τ ′ has bitsize at most 2d′(τ ′ + �log 2d′� + 1) + 2(�log(2d′ 2 + 1)� + 1), which is in Õ (d2 + dτ )

in our case. Therefore, L P (S), L Q (S) and LR(S) have degree at most 2d2 and their bitsizes can be 
explicitly bounded by a function of d and τ in Õ (d2 + dτ ).

Finally, since a � 2d4, its bitsize is at most σ = 4 log d + 2. It is straightforward that the result of 
an evaluation of a univariate polynomial of degree at most d′ and bitsize τ ′ at an integer value of 
bitsize σ has bitsize at most d′σ + τ ′ + log(d′ + 1) + 1. Here d′ � 2d2 and τ ′ is in Õ (d2 + dτ ). We 
thus proved that we can compute an explicit bound, in Õ (d2 + dτ ), on the number of prime divisors 
of L P (a), L Q (a), or LR(a).

Bounding the number of prime μ such that the degree of gcd(R(T , a), R ′(T , a)) changes when R(T , a) and 
R ′(T , a) are reduced modulo μ. By Yap (2000, Lemma 4.12), given two univariate polynomials in Z[X]
of degree at most d′ and bitsize at most τ ′ , the degree of their gcd changes when the polynomials 
are considered modulo μ on a set of μ whose product is bounded14 by (2τ ′√

d′ + 1)2d′+2. As noted 
above, the number of such primes μ is bounded by the bitsize of this bound, and thus is bounded by 
(d′ + 1) (2τ ′ + log(d′ + 1)) + 1. Here d′ � 2d2 and τ ′ is in Õ (d2 + dτ ) since our explicit bound on the 
bitsize of LR(a) holds as well for the bitsize of R(T , a), and, since R(T , a) is of degree at most 2d2, the 
bitsize of R ′(T , a) is bounded by that of R(T , a) plus 1 + log 2d2. We thus obtain an explicit bound in 
Õ (d4 + d3τ ) on the number of primes μ such that the degree of gcd(R(T , a), R ′(T , a)) changes when 
R(T , a) and R ′(T , a) are reduced modulo μ.

The result follows by summing this bound with the bounds we obtained on the number of 
prime divisors of L P (a), L Q (a), or LR(a), and a bound (e.g. 2d4) on the number of primes smaller 
than 2d4. �
3.4. Counting the number of solutions over Zμ

For counting the number of (distinct) solutions of 〈Pμ, Q μ〉, we use a classical algorithm for com-
puting a triangular decomposition of an ideal defined by two bivariate polynomials. We first recall 
this algorithm, slightly adapted to our needs, and analyze its arithmetic complexity.

14 Yap (2000, Lemma 4.12) states the bound as N2d′+2 where N is the maximum Euclidean norm of the vectors of coefficients 
of the polynomials.
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Algorithm 1 Triangular decomposition (González-Vega and El Kahoui, 1996; Li et al., 2011).
Input: P , Q in F[X, Y ] coprime such that LcY (P ) and LcY (Q ) are coprime, dY (Q ) � dY (P ), and

A ∈ F[X] squarefree. (The hypothesis that LcY (P ) and LcY (Q ) are coprime can be relaxed by applying the algorithm
recursively; see Li et al. (2011) for details. We require here this hypothesis for complexity
issues.)

Output: Triangular decomposition {(Ai(X), Bi(X, Y ))}i∈I such that V (〈P , Q , A〉) is the disjoint union of the sets 
V (〈Ai(X), Bi(X, Y )〉)i∈I

1: Compute the subresultant sequence of P and Q with respect to Y : Bi = SresY ,i(P , Q )

2: G0 = gcd(ResY (P , Q ), A) and T = ∅
3: for i = 1 to dY (Q ) do
4: Gi = gcd(Gi−1, sresY ,i(P , Q ))

5: Ai = Gi−1/Gi

6: if dX (Ai) > 0, add (Ai , Bi) to T
7: end for
8: return T = {(Ai(X), Bi(X, Y ))}i∈I

3.4.1. Triangular decomposition
Let P and Q be two polynomials in F[X, Y ]. A decomposition of the solutions of the system {P , Q }

using the subresultant sequence appears in the theory of triangular sets (Lazard, 1992; Li et al., 2011)
and for the computation of topology of curves (González-Vega and El Kahoui, 1996).

The idea is to use Lemma 2 which states that, after specialization at X = α, the first (with re-
spect to increasing i) nonzero subresultant SresY ,i(P , Q )(α, Y ) is of degree i and is equal to the 
gcd of P (α, Y ) and Q (α, Y ). This induces a decomposition of the system {P , Q } into triangular 
subsystems ({Ai(X), SresY ,i(P , Q )(X, Y )}) where a solution α of Ai(X) = 0 is such that the sys-
tem {P (α, Y ), Q (α, Y )} admits exactly i roots (counted with multiplicity), which are exactly those 
of SresY ,i(P , Q )(α, Y ). Furthermore, these triangular subsystems are regular chains, i.e., the leading 
coefficient of the bivariate polynomial (seen in Y ) is coprime with the univariate polynomial. For 
clarity and self-containedness, we recall this decomposition in Algorithm 1, where, in addition, we 
restrict the solutions of the system {P , Q } to those where some univariate polynomials A(X) van-
ishes (A could be identically zero).

The following lemma states the correctness of Algorithm 1 which follows from Lemma 2 and from 
the fact that the solutions of P and Q project on the roots of their resultant.

Lemma 14. (See González-Vega and El Kahoui, 1996, Li et al., 2011.) Algorithm 1 computes a triangular de-
composition {(Ai(X), Bi(X, Y ))}i∈I such that

(i) the set V (〈P , Q , A〉) is the disjoint union of the sets V (〈Ai(X), Bi(X, Y )〉)i∈I ,
(ii)

∏
i∈I Ai is squarefree,

(iii) ∀α ∈ V (Ai), Bi(α, Y ) is of degree i and is equal to gcd(P (α, Y ), Q (α, Y )), and
(iv) Ai(X) and LcY (Bi(X, Y )) are coprime.

In the following lemma, we analyze the complexity of Algorithm 1 for P and Q of degree at most 
dX in X and dY in Y and A of degree at most d2, where d denotes a bound on the total degree 
of P and Q . We will use Algorithm 1 with polynomials with coefficients in F = Zμ and we thus 
only consider its arithmetic complexity in F. Note that the bit complexity of this algorithm, over Z, 
is analyzed in Diochnos et al. (2009, Theorem 19) and its arithmetic complexity is thus implicitly 
analyzed as well; for clarity, we provide here a short proof.

Lemma 15. Algorithm 1 performs Õ (dX d3
Y ) = Õ (d4) arithmetic operations in F.

Proof. From Lemma 3 (note that this lemma is stated for the coefficient ring Z, but the arithmetic 
complexity is the same for any field F), the subresultant sequence of P and Q can be computed 
in Õ (dX d3

Y ) arithmetic operations, and the resultant as well as the principal subresultant coefficients 
have degrees in O (dX dY ). The algorithm performs at most dY gcd computations between these uni-
variate polynomials. The arithmetic complexity of one such gcd computation is soft linear in their 
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Algorithm 2 Number of distinct solutions of 〈Pμ, Q μ〉.
Input: Pμ, Q μ in Zμ[X, Y ] coprime, μ larger than their total degree
Output: Number of distinct solutions of 〈Pμ, Q μ〉
1: Shear Pμ and Q μ by replacing X by X − bY with b ∈ Zμ so that LcY (Pμ(X − bY , Y )) ∈ Zμ

2: Triangular decomposition: {(Ai(X), Bi(X, Y ))}i∈I = Algorithm 1 (Pμ, Q μ, 0)

3: for all i ∈ I do
4: Ci(X) = LcY (Bi(X, Y ))−1 mod Ai(X)

5: B̃ i(X, Y ) = Ci(X)Bi(X, Y ) mod Ai(X)

6: Triangular decomp.: {(Aij(X), Bij(X, Y ))} j∈J i
= Algorithm 1 (B̃ i(X, Y ), ∂ B̃ i (X,Y )

∂Y , Ai(X))

7: end for
8: return

∑
i∈I(i dX (Ai) − ∑

j∈Ji
j dX (Aij))

degrees, that is Õ (dX dY ) (Lemma 4). Hence the arithmetic complexity of computing the systems 
{Si}i=1...d is Õ (dX d2

Y ). The total complexity of the triangular decomposition is hence dominated by 
the cost of the subresultant computation, that is Õ (dX d3

Y ) = Õ (d4). �
3.4.2. Counting the number of solutions over Zμ

We present here Algorithm 2, which computes the number of distinct solutions of an ideal 
Iμ = 〈Pμ, Q μ〉 of Zμ[X, Y ]. Roughly speaking, this algorithm first performs one triangular decom-
position with the input polynomials Pμ and Q μ , and then performs a sequence of triangular de-
compositions with polynomials resulting from this decomposition. The result is close to a radical 
triangular decomposition (see e.g. Aubry, 1999) and the number of solutions of Iμ can be read, with 
a simple formula, from the degrees of the polynomials in the decomposition. Note that Algorithm 2, 
as Algorithm 1, is valid for any base field F but, since we will only use it over Zμ , we state it and 
analyze its complexity in this case.

Lemma 16. Algorithm 2 computes the number of distinct solutions of 〈Pμ, Q μ〉.

Proof. The shear of Line 1 allows to fulfill the requirement of the triangular decomposition algorithm, 
called in Line 2, that the input polynomials have coprime leading coefficients. Once the generically 
sheared polynomial Pμ(X − SY, Y ) is computed (in Zμ[S, X, Y ]), a specific shear value b ∈ Zμ can 
be selected by evaluating the univariate polynomial L Pμ(S) = LcY (Pμ(X − SY, Y )) at d + 1 elements 
of Zμ . The polynomial does not vanish at one of these values since it is of degree at most d and 
d < μ. Note that such a shear clearly does not change the number of solutions.

According to Lemma 14, the triangular decomposition {(Ai(X), Bi(X, Y ))}i∈I computed in Line 2
is such that the solutions of 〈Pμ, Q μ〉 is the disjoint union of the solutions of the 〈Ai(X), Bi(X, Y )〉, 
for i ∈ I . It follows that the number of (distinct) solutions of Iμ = 〈Pμ, Q μ〉 is

#V (Iμ) =
∑
i∈I

∑
α∈V (Ai)

dY
(

Bi(α, Y )
)
.

Since Bi(α, Y ) is a univariate polynomial in Y , dY (Bi(α, Y )) = dY (Bi(α, Y )) − dY (gcd(Bi(α, Y ),

B ′
i(α, Y ))), where B ′

i(α, Y ) is the derivative of Bi(α, Y ), which is also equal to ∂ Bi
∂Y (α, Y ). By 

Lemma 14, dY (Bi(α, Y )) = i, and since the degree of the gcd is zero when Bi(α, Y ) is squarefree, 
we have

#V (Iμ) =
∑
i∈I

( ∑
α∈V (Ai)

i −
∑

α∈V (Ai)
Bi(α,Y ) not sqfr.

dY

(
gcd

(
Bi(α, Y ),

∂ Bi

∂Y
(α, Y )

)))
. (5)

The polynomials Ai(X) are squarefree by Lemma 14, so 
∑

α∈V (Ai)
i is equal to i dX (Ai).

We now consider the sum of the degrees of the gcds. The rough idea is to apply Algo-
rithm 1 to Bi(X, Y ) and ∂ Bi

∂Y (X, Y ), for every i ∈ I , which computes a triangular decomposition 
{(Aij(X), Bij(X, Y ))} j∈Ji such that, for α ∈ V (Aij), dY (gcd(Bi(α, Y ), ∂ Bi

∂Y (α, Y ))) = j (by Lemma 14), 
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which simplifies Eq. (5) into #V (Iμ) = ∑
i∈I(i dX (Ai) − ∑

j∈Ji

∑
α∈V (Aij)

j). However, we cannot di-

rectly apply Algorithm 1 to Bi(X, Y ) and ∂ Bi
∂Y (X, Y ) because their leading coefficients in Y have no 

reason to be coprime.
By Lemma 14, Ai(X) and LcY (Bi(X, Y )) are coprime, thus LcY (Bi(X, Y )) is invertible modulo Ai(X)

(by Bézout’s identity); let Ci(X) be this inverse and define B̃ i(X, Y ) = Ci(X)Bi(X, Y ) mod Ai(X) (such 
that every coefficient of Ci(X)Bi(X, Y ) with respect to Y is reduced modulo Ai(X)). The leading 
coefficient in Y of B̃ i(X, Y ) is equal to 1, so we can apply Algorithm 1 to B̃ i(X, Y ) and ∂ B̃ i

∂Y (X, Y ). Fur-

thermore, if Ai(α) = 0, then B̃ i(α, Y ) = Ci(α)Bi(α, Y ) where Ci(α) 
= 0 since Ci(α)LcY (Bi(α, Y )) = 1. 
Eq. (5) can thus be rewritten by replacing Bi by B̃ i .

By Lemma 14, for every i ∈ I , Algorithm 1 computes a triangular decomposition {(Aij(X),

Bij(X, Y ))} j∈Ji such that V (〈B̃ i, ∂ B̃ i
∂Y , Ai〉) is the disjoint union of the sets V (〈Aij(X), Bij(X, Y )〉), 

j ∈ Ji , and for all α ∈ V (Aij), dY (gcd(B̃ i(α, Y ), ∂ B̃ i
∂Y (α, Y ))) = j. Since the set of α ∈ V (Ai) such that 

B̃ i(α, Y ) is not squarefree is the projection of the set of solutions (α, β) ∈ V (〈B̃ i, ∂ B̃ i
∂Y , Ai〉) we get

#V (Iμ) =
∑
i∈I

(
i dX (Ai) −

∑
j∈Ji

∑
α∈V (Aij)

j

)
.

Aij(X) is squarefree (Lemma 14) so 
∑

α∈V (Aij)
j = jdX (Aij), which concludes the proof. �

The next lemma gives the arithmetic complexity of the above algorithm.

Lemma 17. Given Pμ, Q μ in Zμ[X, Y ] of total degree at most d, Algorithm 2 performs Õ (d4) operations 
in Zμ .

Proof. According to Lemma 7, the sheared polynomials P (T − SY, Y ) and Q (T − SY, Y ) can be ex-
panded in Õ B(d4 + d3τ ) bit operations in Z. Thus the sheared polynomials Pμ(X − SY, Y ) and 
Q μ(X − SY, Y ) can obviously be computed in Õ (d4) arithmetic operations in Zμ .15 The leading term 
LcY (Pμ(X − SY, Y )) ∈ Zμ[S] is a polynomial of degree at most d and a value b ∈ Zμ that does not 
vanish it can be found by at most d +1 evaluations. Each evaluation can be done with O (d) arithmetic 
operations, thus the shear value b can be computed in Õ (d2) operations. It remains to evaluate the 
generically sheared polynomials at this value S = b. These polynomials have O (d2) monomials in X
and Y , each with a coefficient in Zμ[S] of degree at most d; since the evaluation of each coefficient 
is soft linear in d, this gives a total complexity in Õ (d4) for Line 1.

According to Lemma 15, the triangular decomposition in Line 2 can be done in Õ (d4) arithmetic 
operations. In Lines 4 and 5, Ci(X) and B̃ i(X, Y ) can be computed by first reducing modulo Ai(X)

every coefficient of Bi(X, Y ) (with respect to Y ). There are at most i coefficients (by definition of 
subresultants) and the arithmetic complexity of every reduction is soft linear in the degree of the 
operands (von zur Gathen and Gerhard, 2003, Corollary 11.6), which is Õ (d2) by Lemma 3. The re-
duction of Bi(X, Y ) modulo Ai(X) can thus be done with Õ (d3) arithmetic operations in Zμ . Now, in 
Line 4, the arithmetic complexity of computing the inverse of one of these coefficients modulo Ai(X)

is soft linear in its degree (von zur Gathen and Gerhard, 2003, Corollary 11.8), that is Õ (di) where 
di denotes the degree of Ai(X). Furthermore, computing the product modulo Ai(X) of two polyno-
mials which are already reduced modulo Ai(X) can be done in Õ (di) arithmetic operations (von zur 
Gathen and Gerhard, 2003, Corollary 11.8). Thus, in Line 5, the computation of B̃ i(X, Y ) can be done 
with i such multiplications, and thus with Õ (idi) arithmetic operations. Finally, in Line 6, the triangu-
lar decomposition can be done with Õ (i3di) arithmetic operations by Lemma 15. The complexity of 
Lines 4–6 is thus in Õ (d3 + i3di) which is in Õ (d3 + d2idi). The total complexity of the loop in Line 3

15 It can easily be proved that these polynomials can be computed in Õ(d3) arithmetic operations but the Õ (d4) bound is 
sufficient here.
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Algorithm 3 Number of distinct solutions and lucky prime for 〈P , Q 〉.
Input: P , Q in Z[X, Y ] coprime of total degree at most d and bitsize at most τ
Output: The number of solutions and a lucky prime μ for 〈P , Q 〉
1: Compute P (T − SY, Y ) and Q (T − SY, Y )

2: Compute a set B of primes larger than 2d4 and of cardinality Õ (d4 + d3τ ) that contains a lucky prime for 〈P , Q 〉 (see 
Proposition 13)

3: for all μ in B do
4: Compute the reduction modulo μ of P , Q , L P (S), L Q (S) and ResY (φμ(P ), φμ(Q ))

5: if ResY (φμ(P ), φμ(Q )) 
≡ 0 and φμ(L P (S)) φμ(L Q (S)) 
≡ 0 then
6: Compute Nμ = Algorithm 2(φμ(P ), φμ(Q ))

7: end if
8: end for
9: return (μ, Nμ) such that Nμ is maximum

is thus Õ (d4 + d2 ∑
i idi) which is in Õ (d4) because the number of solutions of the triangular system 

(Ai(X), Bi(X, Y )) is at most the degree of Ai times the degree of Bi in Y , that is idi , and the total 
number of these solutions for i ∈ I is that of (P , Q ), by Lemma 14, which is at most d2 by Bézout’s 
bound. This concludes the proof because the sum in Line 8 can obviously be done in linear time in 
the size of the triangular decompositions that are computed during the algorithm. �
3.5. Computing a lucky prime and the number of solutions over Z

We now show how to compute the number of solutions of I = 〈P , Q 〉 over Z and a lucky prime 
for that ideal.

Lemma 18. Algorithm 3 computes the number of distinct solutions and a lucky prime for 〈P , Q 〉 in Õ B(d8 +
d7τ ) bit operations. Moreover, this lucky prime is upper bounded by Õ(d4 + d3τ ).

Proof. We first prove the correctness of the algorithm. Note first that for all μ ∈ B satisfying the 
constraint of Line 5, φμ(P ) and φμ(Q ) are coprime. It follows that Algorithm 2 computes the number 
of distinct solutions Nμ = #V (Iμ) of Iμ . By Proposition 12 and Definition 8, Nμ � #V (I) and the 
equality holds if μ is lucky for I . Since the set B of considered primes contains a lucky one by 
construction, the maximum of the computed value of Nμ is equal to #V (I). Finally, the μ associated 
to any such maximum value of Nμ is necessarily lucky by the constraint of Line 5 and since μ is 
larger than 2d4.

We now prove the complexity of the algorithm. The polynomials P (T − SY, Y ) and Q (T − SY, Y )

can be computed in Õ B(d4 + d3τ ) bit operations by Lemma 7.
Proposition 13 states that we can compute an explicit bound Ξ(d, τ ) in Õ (d4 + d3τ ) on the num-

ber of unlucky primes for 〈P , Q 〉. We want to compute in Line 2 a set B of at least Ξ(d, τ ) primes 
(plus one) that are larger than 2d4. For computing B , we can thus compute the first Ξ(d, τ ) + 2d4 + 1
prime numbers and reject those that are smaller than 2d4. The bit complexity of computing the r
first prime numbers is in Õ (r) and their maximum is in Õ (r) (von zur Gathen and Gerhard, 2003, 
Theorem 18.10). We can thus compute the set of primes B with Õ B(d4 + d3τ ) bit operations and 
these primes are in Õ (d4 + d3τ ).

Polynomials P , Q , L P (S) and L Q (S) are of degree at most d in one or two variables and they 
have bitsize at most Õ (d + τ ) (Lemma 7). The reduction of all their O (d2) coefficients modulo all 
the primes in B can be computed via a remainder tree in a bit complexity that is soft linear in the 
total bitsize of the input (Moenck and Borodin, 1974, Theorem 1), which is dominated by the sum 
of the bitsizes of the Õ (d4 + d3τ ) primes in B each of bitsize O (log dτ ). Furthermore, computing 
the resultant of φμ(P ) and φμ(Q ) can be done with Õ (d3) arithmetic operations in Zμ (Lemma 3) 
and thus in Õ B(d3) bit operations since μ has bitsize O (log dτ ). Hence, the bit complexity of Line 4
is Õ B(d4 + d3τ ).

Finally, the total bit complexity of Line 6 is Õ B(d8 + d7τ ), since each call to Algorithm 2 has bit 
complexity Õ B(d4) by Lemma 17 (since μ has bitsize O (log dτ )). The overall bit complexity of the 
algorithm is thus in Õ B(d8 + d7τ ). �
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Algorithm 4 Separating form for 〈P , Q 〉.
Input: P , Q in Z[X, Y ] of total degree at most d and defining a zero-dimensional ideal I
Output: A linear form X + aY that separates V (I), with a < 2d4 and L P (a) L Q (a) 
= 0

1: Apply Algorithm 3 to compute the number of solutions #V (I) and a lucky prime μ for I
2: Compute P (T − SY, Y ), Q (T − SY, Y ) and R(T , S) = ResY (P (T − SY, Y ), Q (T − SY, Y ))

3: Compute Rμ(T , S) = φμ(R(T , S))

4: Compute Υμ(S) = φμ(L P (S)) φμ(L Q (S))

5: a := 0
6: repeat
7: Compute the degree Na of the squarefree part of Rμ(T , a)

8: a := a + 1
9: until Υμ(a) 
= 0 and Na = #V (I) (Υμ(S) is a polynomial in Zμ[S] and we consider Υμ(a) in Zμ .)

10: return The linear form X + aY

3.6. Computing a separating linear form

Using Algorithm 3, we now present our algorithm for computing a linear form that separates the 
solutions of 〈P , Q 〉.

Theorem 19. Algorithm 4 returns a separating linear form X +aY for 〈P , Q 〉 with a < 2d4 . The bit complexity 
of the algorithm is in Õ B(d8 + d7τ ).

Proof. We first prove the correctness of the algorithm. We start by proving that the value a returned 
by the algorithm is the smallest nonnegative integer such that X +aY separates V (Iμ) with Υμ(a) 
= 0. 
Note first that, in Line 3, φμ(R(T , S)) is indeed equal to Rμ(T , S) which is defined as ResY (Pμ(T −
SY, Y ), Q μ(T − SY, Y )) since the leading coefficients L P (S) and L Q (S) of P (T − SY, Y ) and Q (T −
SY, Y ) do not identically vanish modulo μ (since μ is lucky), and thus L Pμ(S) = φμ(L P (S)), similarly 
for Q , and the resultant can be specialized modulo μ (Basu et al., 2006, Proposition 4.20). Now, Line 9
ensures that the value a returned by the algorithm satisfies Υμ(a) 
= 0, and we restrict our attention 
to nonnegative such values of a. Note that Υμ(a) 
= 0 implies that φμ(L P (a)) φμ(L Q (a)) 
= 0 because 
the specialization at S = a and the reduction modulo μ commute (in Zμ). For the same reason, 
L Pμ(S) = φμ(L P (S)) implies L Pμ(a) = φμ(L P (a)) and thus L Pμ(a) 
= 0 and, similarly, L Q μ(a) 
= 0. On 
the other hand, Line 9 implies that the value a is the smallest that satisfies dT (Rμ(T ,a)) = #V (I), 
which is also equal to #V (Iμ) since μ is lucky. Lemma 10 thus yields that the returned value a is the 
smallest nonnegative integer such that X + aY separates V (Iμ) and Υμ(a) 
= 0, which is our claim.

This property first implies that a < 2d4 because the degree of Υμ is bounded by 2(d2 + d), the 
number of non-separating linear forms is bounded by 

(d2

2

)
(the maximum number of directions de-

fined by any two of d2 solutions), and their sum is less than 2d4 for d � 2. Note that, since μ is lucky, 
2d4 < μ and thus a < μ. The above property thus also implies, by Proposition 9, that X + aY sepa-
rates V (I). This concludes the proof of correctness of the algorithm since a < 2d4 and L P (a) L Q (a) 
= 0
(since Υμ(a) 
= 0).

We now focus on the complexity of the algorithm. By Lemma 18, the bit complexity of Line 1 is 
in Õ B(d8 + d7τ ). The bit complexity of Lines 2 to 5 is in Õ B(d7 + d6τ ). Indeed, by Lemma 7, R(T , S)

has degree O (d2) in T and in S , bitsize Õ (d2 + dτ ), and it can be computed in Õ B(d7 + d6τ ) time. 
Computing Rμ(T , S) = φμ(R(T , S)) can thus be done in reducing O (d4) integers of bitsize Õ (d2 +dτ )

modulo μ. Each reduction is soft linear in the maximum of the bitsizes (von zur Gathen and Gerhard, 
2003, Theorem 9.8) thus the reduction of R(T , S) can be computed in Õ B(d4(d2 + dτ )) time (since 
μ has bitsize in O (log(d4 + d3τ )) by Lemma 18).16 The computation of Υμ can clearly be done with 
the same complexity since each reduction is easier than the one in Line 3, and the product of the 

16 Note that Rμ(T , S) can be computed more efficiently in Õ B (d5 + d3τ ) bit operations as the resultant of Pμ(T − SY, Y )

and Q μ(T − SY, Y ) because computing these two polynomials and their reduction can be done in Õ B (d4 + d3τ ) bit operations 
(Lemma 7) and their resultant can be computed with Õ(d5) arithmetic operations in Zμ (Lemma 3) and thus with Õ B (d5) bit 
operations since μ has bitsize in O (log(d4 + d3τ )).
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polynomials (which does not actually need to be computed since we are only interested in whether 
Υμ(a) vanishes) can be done with a bit complexity that is soft linear in the product of the maximum 
degrees and maximum bitsizes (von zur Gathen and Gerhard, 2003, Corollary 8.27).

We proved that the value a returned by the algorithm is less than 2d4, thus the loop in Line 6
is performed at most 2d4 times. Each iteration consists of computing the squarefree part of Rμ(T , a)

which requires Õ B(d4) bit operations. Indeed, computing Rμ(T , S) at S = a amounts to evaluating, 
in Zμ , O (d2) polynomials in S , each of degree O (d2) (by Lemma 7). Note that a does not need to 
be reduced modulo μ because a < 2d4 and 2d4 < μ since μ is lucky. Thus, the bit complexity of 
evaluating in Zμ each of the O (d2) polynomials in S is the number of arithmetic operations in Zμ , 
which is linear the degree that is O (d2), times the (maximum) bit complexity of the operations in Zμ , 
which is in O B(log dτ ) since μ is in Õ (d4 + d3τ ) by Lemma 18. Hence, computing Rμ(T , a) can be 
done in Õ B(d4) bit operations. Once Rμ(T , a) is computed, the arithmetic complexity of computing 
its squarefree part in Zμ is soft linear in its degree (Lemma 4), that is Õ (d2), which yields a bit 
complexity in Õ B(d2) since, again, μ is in Õ (d4 + d3τ ). This leads to a total bit complexity of Õ B(d8)

for the loop in Lines 6 to 9, and thus to a total bit complexity for the algorithm in Õ B(d8 + d7τ ). �
4. Rational Univariate Representation

The idea of this section is to express the polynomials of a RUR of two polynomials in terms of 
a resultant defined from these polynomials. Given a separating form, this yields a new algorithm to 
compute a RUR and it also enables us to derive the bitsize of the polynomials of a RUR. In Section 4.1, 
we prove these expressions for the polynomials of a RUR and present the corresponding algorithm. 
We prove the bound on the bitsize of the RUR in Section 4.2. These results are summarized in Theo-
rem 22.

Throughout this section we assume that the two input polynomials P and Q are coprime in 
Z[X, Y ], that their maximum total degree d is at least 2 and that their coefficients have maximum 
bitsize τ .

We first recall the definition and main properties of Rational Univariate Representations. In the 
following, for any polynomial v ∈ Q[X, Y ] and σ = (α, β) ∈ C2, we denote by v(σ ) the image of σ
by the polynomial function v (e.g. X(α, β) = α).

Definition 20. (See Rouillier, 1999, Definition 3.3.) Let I ⊂ Q[X, Y ] be a zero-dimensional ideal, 
V (I) = {σ ∈ C2, v(σ ) = 0, ∀v ∈ I} its associated variety, and a linear form T = X + aY with a ∈ Q. 
The RUR-candidate of I associated to X + aY (or simply, to a), denoted RURI,a , is the following set of 
four univariate polynomials in C[T ]

f I,a(T ) =
∏

σ∈V (I)

(
T − X(σ ) − aY (σ )

)μI (σ )

f I,a,v(T ) =
∑

σ∈V (I)

μI (σ )v(σ )
∏

ς∈V (I),ς 
=σ

(
T − X(ς) − aY (ς)

)
, for v ∈ {1, X, Y } (6)

where, for σ ∈ V (I), μI (σ ) denotes the multiplicity of σ in I . If (X, Y ) �→ X +aY is injective on V (I), 
we say that the linear form X + aY separates V (I) (or is separating for I) and RURI,a is called a RUR 
(the RUR of I associated to a).

The following lemma states fundamental properties of RURs, which are all straightforward from 
the definition except for the fact that the RUR polynomials have rational coefficients (Rouillier, 1999, 
Theorem 3.1).

Lemma 21. If I ⊂ Q[X, Y ] is a zero-dimensional ideal and a ∈ Q, the four polynomials of the RUR-candidate 
RURI,a, have rational coefficients. Furthermore, if X +aY separates V (I), the following mapping between V (I)
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and V ( f I,a) = {γ ∈C, f I,a(γ ) = 0}
V (I) → V ( f I,a)

(α,β) �→ α + aβ(
f I,a,X

f I,a,1
(γ ),

f I,a,Y

f I,a,1
(γ )

)
←� γ

is a bijection, which preserves the real roots and the multiplicities.

We prove in this section the following theorem on the RUR of two polynomials. We state it for any 
separating linear form X + aY with integer a of bitsize O (log d). Recall that there exists a separating 
form X + aY with a positive integer a < 2d4, which can be computed in Õ B(d8 + d7τ )bit operations 
(Theorem 19). Theorem 22 is a direct consequence of Propositions 24 and 28.

Theorem 22. Let P , Q ∈ Z[X, Y ] be two coprime bivariate polynomials of total degree at most d and maxi-
mum bitsize τ . Given a separating form X +aY with integer a of bitsize O (log d), the RUR of 〈P , Q 〉 associated 
to a can be computed using Proposition 23 with Õ B(d7 + d6τ ) bit operations. Furthermore, the polynomials 
of this RUR have degree at most d2 and bitsize in Õ (d2 + dτ ).

4.1. RUR computation

We show here that the polynomials of a RUR can be expressed as combinations of specializa-
tions of the resultant R and its partial derivatives. The seminal idea has already been used by several 
authors in various contexts for computing rational parameterizations of the radical of a given zero-
dimensional ideal and mainly for bounding the size of a Chow form; see e.g. Canny (1987), Alonso et 
al. (1996) or Schost (2001). Based on the same idea but keeping track of multiplicities, we present a 
simple new formulation for the polynomials of a RUR, given a separating form.

Proposition 23. For any rational a such that L P (a)L Q (a) 
= 0 and such that X + aY is a separating form of 
I = 〈P , Q 〉, the RUR of 〈P , Q 〉 associated to a is as follows:

f I,a(T ) = R(T ,a)

LR(a)
f I,a,1(T ) = f ′

I,a(T )

gcd( f I,a(T ), f ′
I,a(T ))

f I,a,Y (T ) =
∂ R
∂ S (T ,a) − f I,a(T ) ∂LR

∂ S (a)

LR(a)gcd( f I,a(T ), f ′
I,a(T ))

f I,a,X (T ) = T f I,a,1(T ) − dT ( f I,a) f I,a(T ) − af I,a,Y (T ).

We postpone the proof of Proposition 23 to Section 4.1.1 and first analyze the complexity of the 
computation of the expressions therein.

Proposition 24. The computation of the polynomials in Proposition 23 can be done with ̃O B(d7 +d6(τ + τa))

bit operations, where τa is the bitsize of a.

Proof. According to Lemma 7, the resultant R(T , S) of P (T − SY, Y ) and Q (T − SY, Y ) with respect to 
Y has degree O (d2) in T and S , has bitsize in Õ (d(d + τ )), and it can be computed in Õ B(d6(d + τ ))

bit operations. We can now apply the formulas of Proposition 23 for computing the polynomials of 
the RUR.

Specializing R(T , S) at S = a can be done by evaluating O (d2) polynomials in S , each of degree 
in O (d2) and bitsize in Õ (d2 + dτ ). By Lemma 6, each of the O (d2) evaluations can be done in 
Õ B(d2(d2 + dτ + τa)) bit operations and each result has bitsize in Õ (d2 + dτ + d2τa). Hence, R(T , a)

and f I,a(T ) have degree in O (d2), bitsize in Õ (d2 + dτ + d2τa), and they can be computed with 
Õ B(d4(d2 + dτ + τa)) bit operations.
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The complexity of computing the numerators of f I,a,1(T ) and f I,a,Y (T ) is clearly dominated by 
the computation of ∂ R

∂ S (T , a). Indeed, computing the derivative ∂ R
∂ S (T , S) can trivially be done in 

O (d4) arithmetic operations of complexity Õ B(d2 + dτ ), that is in Õ B(d6 + d5τ ). Then, as for R(T , a), 
∂ R
∂ S (T , a) has degree in O (d2), bitsize in Õ (d2 + dτ + d2τa), and it can be computed within the same 
complexity as the computation of R(T , a).

On the other hand, since f I,a(T ) and f ′
I,a(T ) have degree in O (d2) and bitsize in Õ (d2 + dτ +

d2τa), and f I,a(T ) = R(T ,a)
LR (a)

, one can multiply these two polynomials by LR(a) which is of bitsize 
Õ (d2 + dτ + d2τa) and by the denominator of the rational a to the power of dS (R(T , S)) which is 
an integer of bitsize in O (d2τa), to obtain polynomials with coefficients in Z. Hence, according to 
Lemma 4, the gcd of f I,a(T ) and f ′

I,a(T ) can be computed in Õ B(d4(d2 + dτ + d2τa)) bit operations 
and it has bitsize in Õ (d2 + dτ + d2τa).

Now, the bit complexity of the division of the numerators by the gcd is of the order of the square 
of their maximum degree times their maximum bitsize (von zur Gathen and Gerhard, 2003, Theo-
rem 9.6 and subsequent discussion), that is, the divisions (and hence the computation of f I,a,1(T )

and f I,a,Y (T )) can be done in Õ B(d4(d2 + dτ + d2τa)) bit operations.
Finally, computing f I,a,X (T ) can be done within the same complexity as for f I,a,1(T ) and f I,a,Y (T )

since it is dominated by the computation of the squarefree part of f I,a(T ), which can be computed 
similarly and with the same complexity as above, by Lemma 4.

The overall complexity is thus that of computing the resultant which is in Õ B(d6(d + τ )) plus that 
of computing the above gcd and Euclidean division which is in Õ B(d4(d2 + dτ + d2τa)). This gives a 
total of Õ B(d7 + d6(τ + τa)). �
4.1.1. Proof of Proposition 23

Proposition 23 expresses the polynomials f I,a and f I,a,v of a RUR in terms of specializations (by 
S = a) of the resultant R(T , S) and its partial derivatives. Since the specializations are done after 
considering the derivatives of R , we study the relations between these entities before specializing S
by a.

For that purpose, we first introduce the following polynomials which are exactly the polynomials 
f I,a and f I,a,v of (6) where the parameter a is replaced by the variable S . These polynomials can be 
seen as the RUR polynomials of the ideal I with respect to a “generic” linear form X + SY .

f I (T , S) =
∏

σ∈V (I)

(
T − X(σ ) − SY(σ )

)μI (σ )

f I,v(T , S) =
∑

σ∈V (I)

μI (σ )v(σ )
∏

ς∈V (I),ς 
=σ

(
T − X(ς) − SY(ς)

)
, v ∈ {1, X, Y }. (7)

These polynomials are obviously in C[T , S], but they are actually in Q[T , S] because, when S is 
specialized at any rational value a, the specialized polynomials are those of RURI,a which are in Q[T ]
(Lemma 21).

Before proving Proposition 23, we express the derivatives of f I (T , S) in terms of f I,v(T , S), in 
Lemma 25, and show that f I (T , S) is the monic form of the resultant R(T , S), seen as a polynomial 
in T , in Lemma 27.

Lemma 25. Let gI(T , S) = ∏
σ∈V (I)(T − X(σ ) − SY(σ ))μI (σ )−1 . We have

∂ f I

∂T
(T , S) = gI (T , S) f I,1(T , S), (8)

∂ f I

∂ S
(T , S) = gI (T , S) f I,Y (T , S). (9)

Proof. It is straightforward that the derivative of f I with respect to T is 
∑

σ∈V (I) μI (σ )(T −
X(σ ) − SY(σ ))μI (σ )−1 ∏

ς∈V (I),ς 
=σ (T − X(ς) − SY(σ ))μI (ς) , which can be rewritten as the product 
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of 
∏

σ∈V (I)(T − X(σ ) − SY(σ ))μI (σ )−1 and 
∑

σ∈V (I) μI (σ ) 
∏

ς∈V (I),ς 
=σ (T − X(ς) − SY(ς)) which is 
exactly the product of gI (T , S) and f I,1(T , S).

The expression of the derivative of f I with respect to S is similar to that with respect to T except 
that the derivative of T − X(σ ) − SY(σ ) is now Y (σ ) instead of 1. It follows that ∂ f I

∂ S is the product 
of 

∏
σ∈V (I)(T − X(σ ) − SY(σ ))μI (σ )−1 and 

∑
σ∈V (I) μI (σ )Y (σ ) 

∏
ς∈V (I),ς 
=σ (T − X(ς) − SY(ς)) which 

is the product of gI (T , S) and f I,Y (T , S). �
For the proof of Lemma 27, we will need the following lemma which states that when two polyno-

mials have no common solution at infinity in some direction, the roots of their resultant with respect 
to this direction are the projections of the solutions of the system with cumulated multiplicities.

Lemma 26. (See Busé et al., 2005, Prop. 2 and 5.) Let P , Q ∈ F[X, Y ] defining a zero-dimensional ideal I =
〈P , Q 〉, such that their leading terms LcY (P ) and LcY (Q ) do not have common roots. Then ResY (P , Q ) =
c
∏

σ∈V (I)(X − X(σ ))μI (σ ) where c is nonzero in F.

The following lemma links the resultant of P (T − SY, Y ) and Q (T − SY, Y ) with respect to Y and 
the polynomial f I (T , S) as defined above.

Lemma 27. R(T , S) = LR(S) f I (T , S) and, for any a ∈Q, L P (a)L Q (a) 
= 0 implies that LR(a) 
= 0.

Proof. The proof is organized as follows. We first prove that for any rational a such that L P (a)L Q (a)

does not vanish, R(T , a) = c(a) f I (T , a) where c(a) ∈ Q is a nonzero constant depending on a. This 
is true for infinitely many values of a and, since R(T , S) and f I (T , S) are polynomials, we can de-
duce that R(T , S) = LR(S) f I (T , S). This will also imply the second statement of the lemma since, 
if L P (a)L Q (a) 
= 0, then R(T , a) = c(a) f I (T , a) = LR(a) f I (T , a) with c(a) 
= 0, thus LR(a) 
= 0 (since 
f I (T , a) is monic).

If a is such that L P (a)L Q (a) 
= 0, the resultant R(T , S) can be specialized at S = a, in the sense 
that R(T , a) is equal to the resultant of P (T − aY , Y ) and Q (T − aY , Y ) with respect to Y (Basu et 
al., 2006, Proposition 4.20).

We now apply Lemma 26 to these two polynomials P (T − aY , Y ) and Q (T − aY , Y ). These two 
polynomials satisfy the hypotheses of this lemma: first, their leading coefficients (in Y ) do not 
depend on T , hence they have no common root in Q[T ]; second, the polynomials P (T − aY , Y )

and Q (T − aY , Y ) are coprime because P (X, Y ) and Q (X, Y ) are coprime by assumption and the 
change of variables (X, Y ) �→ (T = X + aY , Y ) is a Q-automorphism of Q[X, Y ] (and a common 
factor will remain a common factor after the change of variables). Hence Lemma 26 yields that 
R(T , a) = c(a) 

∏
σ∈V (Ia)(T − T (σ ))μIa (σ ) , where c(a) ∈ Q is a nonzero constant depending on a, and 

Ia is the ideal generated by P (T − aY , Y ) and Q (T − aY , Y ).
We now observe that 

∏
σ∈V (Ia)(T − T (σ ))μIa (σ ) is equal to f I (T , a) = ∏

σ∈V (I)(T − X(σ ) −
aY (σ ))μI (σ ) since any solution (α, β) of P (X, Y ) is in one-to-one correspondence with the solution 
(α + aβ, β) of P (T − aY , Y ) (and similarly for Q ) and the multiplicities of the solutions also match, 
i.e. μI (σ ) = μIa (σa) when σ and σa are in correspondence through the mapping (Fulton, 2008, §3.3 
Proposition 3 and Theorem 3). Hence,

L P (a)L Q (a) 
= 0 ⇒ R(T ,a) = c(a) f I (T ,a) with c(a) 
= 0. (10)

Since there are finitely many values of a such that L P (a)L Q (a)LR(a) = 0 and since f I (T , S) is monic 
with respect to T , (10) implies that R(T , S) and f I (T , S) have the same degree in T , say D . We write 
these two polynomials as

R(T , S) = LR(S)T D +
D−1∑

ri(S)T i, f I (T , S) = T D +
D−1∑

f i(S)T i . (11)

i=0 i=0
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If a is such that L P (a)L Q (a)LR(a) 
= 0, (10) and (11) imply that LR(a) = c(a) and ri(a) = LR(a) f i(a), for 
all i. These equalities hold for infinitely many values of a, and ri(S), LR(S) and f i(S) are polynomials 
in S , thus ri(S) = LR(S) f i(S) and, by (11), R(T , S) = LR(S) f I (T , S). �

We can now prove Proposition 23, which we recall, for clarity.

Proposition 23. For any rational a such that L P (a)L Q (a) 
= 0 and such that X + aY is a separating form of 
I = 〈P , Q 〉, the RUR of 〈P , Q 〉 associated to a is as follows:

f I,a(T ) = R(T ,a)

LR(a)
f I,a,1(T ) = f ′

I,a(T )

gcd( f I,a(T ), f ′
I,a(T ))

f I,a,Y (T ) =
∂ R
∂ S (T ,a) − f I,a(T ) ∂LR

∂ S (a)

LR(a)gcd( f I,a(T ), f ′
I,a(T ))

f I,a,X (T ) = T f I,a,1(T ) − dT ( f I,a) f I,a(T ) − af I,a,Y (T ).

Proof. Since we assume that a is such that L P (a)L Q (a) 
= 0, Lemma 27 immediately gives the first 
formula.

Eq. (8) states that f I,1(T , S)gI (T , S) = ∂ f I (T ,S)
∂T , where gI (T , S) = ∏

σ∈V (I)(T − X(σ ) −SY(σ ))μI (σ )−1. 
In addition, gI being monic in T , it never identically vanishes when S is specialized, thus the preced-

ing formula yields after specialization: f I,a,1(T ) = f ′
I,a(T )

gI (T ,a)
. Furthermore, gI (T , a) = gcd( f I,a(T ), f ′

I,a(T )). 
Indeed, f I,a(T ) = ∏

σ∈V (I)(T − X(σ ) − aY (σ ))μI (σ ) and all values X(σ ) + aY (σ ), for σ ∈ V (I), are 
pairwise distinct since X + aY is a separating form, thus the gcd of f I,a(T ) and its derivative is ∏

σ∈V (I)(T − X(σ ) − aY (σ ))μI (σ )−1, that is gI (T , a). This proves the formula for f I,a,1.
Concerning the third equation, Lemma 27 together with Eq. (9) implies:

f I,Y (T , S) =
∂ f I (T ,S)

∂ S

gI (T , S)
=

∂(R(T ,S)/LR (S))
∂ S

gI (T , S)
=

∂ R(T ,S)
∂ S LR(S) − R(T , S)

∂LR (S)
∂ S

LR(S)2 gI (T , S)

=
∂ R(T ,S)

∂ S − f I (T , S)
∂LR (S)

∂ S

LR(S)gI (T , S)
.

As argued above, when specialized, gI (T , a) = gcd( f I,a(T ), f ′
I,a(T )) and it does not identically vanish. 

By Lemma 27, LR(a) does not vanish either, and the formula for f I,a,Y follows.

It remains to compute f I,a,X . Lemma 21 implies that, for any root γ of f I,a: γ = f I,a,X
f I,a,1

(γ ) +
a f I,a,Y

f I,a,1
(γ ), and thus f I,a,X (γ ) + af I,a,Y (γ ) − γ f I,a,1(γ ) = 0. Replacing γ by T , we have that the poly-

nomial f I,a,X (T ) + af I,a,Y (T ) − T f I,a,1(T ) vanishes at every root of f I,a , thus the squarefree part of 
f I,a divides that polynomial. In other words, f I,a,X (T ) = T f I,a,1(T ) − af I,a,Y (T ) mod f I,a(T ). We now 
compute T f I,a,1(T ) and af I,a,Y (T ) modulo f I,a(T ).

Eq. (6) implies that f I,a,v(T ) is equal to T #V (I)−1 ∑
σ∈V (I) μI (σ )v(σ ) plus some terms of lower 

degree in T , and that the degree of f I,a(T ) is #V (I) (since X + aY is a separating form). First, 
for v = Y , this implies that dT ( f I,a,Y ) < dT ( f I,a), and thus that af I,a,Y (T ) is already reduced mod-
ulo f I,a(T ). Second, for v = 1, 

∑
σ∈V (I) μI (σ ) is nonzero and equal to dT ( f I,a). Thus, T f I,a,1(T )

and f I,a(T ) are both of degree #V (I), and their leading coefficients are dT ( f I,a) and 1, respectively. 
Hence T f I,a,1(T ) mod f I,a(T ) = T f I,a,1(T ) − dT ( f I,a) f I,a(T ). We thus obtain the last equation, that is, 
f I,a,X (T ) = T f I,a,1(T ) − dT ( f I,a) f I,a(T ) − af I,a,Y (T ). �
4.2. RUR bitsize

We prove here, in Proposition 28, a new bound on the bitsize of the coefficients of the polynomials 
of a RUR. This bound is interesting in its own right and is instrumental for our analysis of the com-
plexity of computing isolating boxes of the solutions of the input system, as well as for performing 
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sign_at evaluations. We state our bound for RUR-candidates, that is even when the linear form X + aY
is not separating. We only use this result when the form is separating, for proving Theorem 22, but 
the general result is interesting in a probabilistic context when a RUR-candidate is computed with a 
random linear form. We also prove our bound, not only for the RUR-candidates of an ideal defined 
by two polynomials P and Q , but for any ideal of Z[X, Y ] that contains P and Q (for instance the 
radical of 〈P , Q 〉 or the ideals obtained by decomposing 〈P , Q 〉 according to the multiplicity of the 
solutions).

Proposition 28. Let P , Q ∈ Z[X, Y ] be two coprime polynomials of total degree at most d and maximum 
bitsize τ , let a be a rational of bitsize τa, and let J be any ideal of Z[X, Y ] containing P and Q . The polynomials 
of the RUR-candidate of J associated to a have degree at most d2 and bitsize in ̃O (d2τa + dτ ). Moreover, there 
exists an integer of bitsize in Õ (d2τa + dτ ) such that the product of this integer with any polynomial in the 
RUR-candidate yields a polynomial with integer coefficients.17

Before proving Proposition 28, we recall Mignotte’s lemma and a notion of primitive part for poly-
nomials in Q[X, Y ] and some of its properties.

Lemma 29. (See Basu et al., 2006, Corollary 10.12.) Let P ∈ Z[X, Y ] be of degree at most d in each variable 
with coefficients bitsize at most τ . If P = Q 1 Q 2 with Q 1 , Q 2 in Z[X, Y ], then the bitsize of Q i, i = 1, 2, is 
in Õ (d + τ ).

Primitive part. Consider a polynomial P in Q[X, Y ] of degree at most d in each variable. It can be 
written P = ∑d

i, j=0
aij
bi j

X i Y j with aij and bij coprime in Z for all i, j. We define the primitive part of 
P , denoted pp(P ), as P divided by the gcd of the aij and multiplied by the least common multiple 
(lcm) of the bij . (Note that this definition is not entirely standard since we do not consider contents 
that are polynomials in X or in Y .) We also denote by τP the bitsize of P (that is, the maximum 
bitsize of all the aij and bij ). We prove three properties of the primitive part which will be useful in 
the proof of Proposition 28.

Lemma 30. For any two polynomials P and Q in Q[X, Y ], we have the following properties: (i) pp(P Q ) =
pp(P ) pp(Q ). (ii) If P is monic then τP � τpp(P ) and, more generally, if P has one coefficient, ξ , of bitsize τξ , 
then τP � τξ + τpp(P ) . (iii) If P has coefficients in Z, then τpp(P ) � τP .

Proof. Gauss Lemma states that if two univariate polynomials with integer coefficients are primitive, 
so is their product. This lemma can straightforwardly be extended to be used in our context by ap-
plying the mapping Xi Y j → Z ik+ j with k > 2 max(dY (P ), dY (Q )). Thus, if P and Q in Q[X, Y ] are 
primitive (i.e., each of them has integer coefficients whose common gcd is 1), their product is primi-
tive. It follows that pp(P Q ) = pp(P ) pp(Q ) because, writing P = α pp(P ) and Q = β pp(Q ), we have 
pp(P Q ) = pp(α pp(P ) β pp(Q )) = pp(pp(P ) pp(Q )) which is equal to pp(P ) pp(Q ) since the product of 
two primitive polynomials is primitive.

Second, if P ∈ Q[X, Y ] has one coefficient, ξ , of bitsize τξ , then τP � τξ + τpp(P ) . Indeed, we have 
P = ξ P

ξ
thus τP � τξ + τ P

ξ
. Since P

ξ
has one of its coefficients equal to 1, its primitive part is P

ξ

multiplied by an integer (the lcm of the denominators), thus τ P
ξ
� τpp( P

ξ
)

and pp( P
ξ
) = pp(P ) by 

definition, which implies the claim.
Third, if P has coefficients in Z, then τpp(P ) � τP since pp(P ) is equal to P divided by an integer 

(the gcd of the integer coefficients). �

17 In other words, the mapping γ �→ (
f J ,a,X
f J ,a,1

(γ ), f J ,a,Y
f J ,a,1

(γ )) sending the solutions of f J ,a(T ) to those of J (see Lemma 21) can 
be defined with polynomials with integer coefficients of bitsize Õ(d2τa + dτ ). This will be needed in the proof of Lemma 37.
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The idea of the proof of Proposition 28 is, for J ⊇ I = 〈P , Q 〉, first argue that the polynomial f J , 
that is the first polynomial of the RUR-candidate before specialization at S = a, is a factor of f I which 
is a factor of the resultant R(T , S) by Lemma 27. We then derive a bound of Õ (d2 + dτ ) on the 
bitsize of f J from the bitsize of this resultant using Lemma 29. The bound on the bitsize of the other 
polynomials of the non-specialized RUR-candidate of J follows from the bound on f J and we finally 
specialize all these polynomials at S = a which yields the result. We decompose this proof in two 
lemmas to emphasize that, although the bound on the bitsize of f J uses the fact that J contains the 
polynomials P and Q , the second part of the proof only uses the bound on f J .

Lemma 31. Let P , Q ∈ Z[X, Y ] be two coprime polynomials of total degree at most d and maximum bitsize τ , 
and J be any ideal of Z[X, Y ] containing P and Q . The polynomial f J (T , S) (see (7)) and its primitive part 
have bitsize in Õ (d2 + dτ ) and degree at most d2 in each variable.

Proof. Consider an ideal J containing I = 〈P , Q 〉. Counted with multiplicity, the set of solutions of 
J is a subset of those of I thus, by Eq. (7), polynomial f J (T , S) is monic in T and f J (T , S) divides 
f I (T , S). Furthermore, f I (T , S) divides R(T , S) by Lemma 27. Thus f J (T , S) divides R(T , S) and we 
consider h ∈ Q[T , S] such that f J h = R . Taking the primitive part, we have pp( f J ) pp(h) = pp(R) by 
Lemma 30. The bitsize of pp(R) is in Õ (d2 + dτ ) because R is of bitsize Õ (d2 + dτ ) (Lemma 7) and, 
since R has integer coefficients, τpp(R) � τR (Lemma 30). This implies that pp( f J ) also has bitsize in 
Õ (d2 + dτ ) by Lemma 29 because the degree of pp(R) is in O (d2) (Lemma 7). Furthermore, since 
f J (T , S) is monic in T , τ f J � τpp( f J ) (Lemma 30) which implies that both f J and its primitive part 
have bitsize in Õ (d2 +dτ ). Finally, the number of solutions (counted with multiplicity) of 〈P , Q 〉 is at 
most d2 by the Bézout bound, and this bound also holds for J ⊇ 〈P , Q 〉. It then follows from Eq. (7)
that f J has degree at most d2 in each variable. �
Lemma 32. Let J be any ideal such that polynomials f J (T , S) (see (7)) and its primitive part have degree 
O (d2) and bitsize in ̃O (d2 +dτ ) and a is a rational of bitsize τa. Then all the polynomials of the RUR-candidate 
RUR J ,a have bitsize in ̃O (d2τa + dτ ). Moreover, there exists an integer of bitsize in ̃O (d2τa + dτ ) such that its 
product with any polynomial in the RUR-candidate yields a polynomial with integer coefficients.

Proof. Bitsize of f J ,v , v ∈ {1, Y }. We consider the equations of Lemma 25 which can be written as 
∂ f J
∂u (T , S) = g J (T , S) f J ,v(T , S) where u is T or S , and v is 1 or Y , respectively. We first bound the 

bitsize of one coefficient, ξ , of f J ,v so that we can apply Lemma 30 which states that τ f J ,v � τξ +
τpp( f J ,v ) . We consider the leading coefficient ξ of f J ,v with respect to the lexicographic order (T , S). 
Since g J is monic in T (see Lemma 25), the leading coefficient (with respect to the same ordering) of 
the product g J f J ,v = ∂ f J

∂u is ξ which thus has bitsize in Õ (τ f J ) (since it is bounded by τ f J plus the log 
of the degree of f J ). It thus follows from the hypothesis on τ f J that τ f J ,v is in Õ (d2 + dτ + τpp( f J ,v )).

We now take the primitive part of the above equation (of Lemma 25), which gives pp(
∂ f J
∂u (T , S)) =

pp(g J (T , S)) pp( f J ,v(T , S)). By Lemma 29, τpp( f J ,v ) is in Õ (d2 +τ
pp(

∂ f J
∂u )

). In order to bound the bitsize 

of pp(
∂ f J
∂u ), we multiply ∂ f J

∂u by the lcm of the denominators of the coefficients of f J , which we denote 
by lcm f J . Multiplying by a constant does not change the primitive part and lcm f J

∂ f J
∂u has integer 

coefficients, so the bitsize of pp(
∂ f J
∂u ) = pp(lcm f J

∂ f J
∂u ) is thus at most that of lcm f J

∂ f J
∂u which is 

bounded by the sum of the bitsizes of lcm f J and ∂ f J
∂u . By hypothesis, the bitsize of f J is in Õ (d2 +dτ )

so the bitsize of ∂ f J
∂u is also in Õ (d2 + dτ ). On the other hand, since f J is monic (in T ), f J lcm f J =

pp( f J ) and τlcm f J
� τpp( f J ) which is in Õ (d2 +dτ ) by hypothesis. It follows that τpp( f J ,v ) and τ f J ,v are 

also in Õ (d2 + dτ ) for v ∈ {1, Y }.

Bitsize of f J ,X . We obtain the bound for f J ,X by symmetry. Similarly as we proved that f J ,Y has 
bitsize in Õ (d2 + dτ ), we get, by exchanging the role of X and Y in Eq. (7) and Lemma 25, that 
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∑
σ∈V ( J ) μ J (σ )X(σ ) 

∏
ς∈V ( J ),ς 
=σ (T − Y (ς) − S X(ς)) has bitsize in Õ (d2 + dτ ). This polynomial has 

degree O (d2) in T and S , by hypothesis, thus after replacing S by 1
S and then T by T

S , the polynomial 
is of degree O (d2) in T and 1

S . We multiply it by S to the power in 1
S and obtain f J ,X which is thus 

of bitsize Õ (d2 + dτ ).

The lcm of the denominators of the coefficients in the polynomials f J and f J ,v , v ∈ {1, X, Y } have bitsize 
Õ (d2 +dτ ). We have already argued that lcm f J , the lcm of the denominators of the coefficients of f J , 
has bitsize in Õ (d2 +dτ ). For each of the other polynomials f J ,v , v ∈ {1, X, Y }, denote by lcm f J ,v and 
gcd f J ,v

the lcm of the denominators of its coefficients and the gcd of its numerators. By definition, 

pp( f J ,v) = lcm f J ,v
gcd f J ,v

f J ,v . Let δ be any coefficient of pp( f J ,v) ∈ Z[S, T ] and α
β

be the corresponding 

coefficient of f J ,v ∈ Q[S, T ] (with α and β coprime integers); we have lcm f J ,v = δ
β
α gcd f J ,v

� δ β

since gcd f J ,v
divides α. It follows that τlcm f J ,v

� τpp( f J ,v ) + τ f J ,v which are both in Õ (d2 + dτ ), as 
proved above. Hence the lcm of the denominators of all the coefficients in f J and f J ,v , v ∈ {1, X, Y }
have bitsize Õ (d2 + dτ ).

Specialization at S = a. Finally, since all these polynomials have degree O (d2), bitsize Õ (d2 + dτ ) and 
the lcm of the denominators of their coefficients have bitsize Õ (d2 + dτ ), it follows from Lemma 6
that their specializations at S = a have bitsize in Õ (d2 + dτ + d2τa) = Õ (d2τa + dτ ). In addition the 
product of these lcm times the denominator of ad2

is an integer of bitsize Õ (d2τa + dτ ) such that its 
product with any polynomial of RUR J ,a has integer coefficients. �
Proof of Proposition 28. By Lemma 31 and Eq. (7), f J and f J ,v , v ∈ {1, X, Y } have degree at most d2

with respect to each variable. It follows from Eq. (6) that all the polynomials of any RUR-candidate of 
J have degree at most d2. The rest of the proposition is a corollary of Lemmas 31 and 32. �
5. Applications

We present three applications enlightening the advantages of computing a RUR of a system. The 
first one is the isolation of the solutions, that is computing boxes with rational coordinates that isolate 
the solutions. The second one is the evaluation of the sign of a bivariate polynomial at a real solution 
of the system. Finally, we address the problem of computing a rational parameterization of a system 
defined by several equality and inequality constraints. In all these applications, we take advantage of 
the RUR to transform bivariate operations on the system into univariate operations. We assume that 
the polynomials of the RURs satisfy the bitsize bound of Theorem 22.

We start by recalling the complexity of isolating the real roots of a univariate polynomial. Here, f
denotes a univariate polynomial of degree d with integer coefficients of bitsize at most τ .

Lemma 33. (See Mehlhorn et al., 2013, Theorem 5.18) Isolating intervals of all the real roots of f can be 
computed and refined up to a width less than 2−L with Õ B(d3 + d2τ + dL) bit operations.

Let the minimum root separation bound of f (or simply the separation bound of f ) be the mini-
mum distance between two different complex roots of f : sep( f ) = min{γ , δ roots of f ,γ 
=δ} |γ − δ|.

Lemma 34. (See Rump, 1979, Theorem 4.) One has sep( f ) > 1/(2dd/2+2(d2τ + 1)d), which yields sep( f ) >
2−Õ (dτ ) .

18 Theorem 5 of Mehlhorn et al. (2013) is stated for complex roots, however it is straightforward to identify the boxes con-
taining the real roots within the same complexity. Indeed, by considering L in Õ (dτ ) with 2−L smaller than twice the root 
separation bound of f (which is possible by Lemma 34), the isolating boxes of the complex roots do not intersect the real axis.
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5.1. Computation of isolating boxes

By Lemma 21, the RUR of an ideal I defines a mapping between the roots of a univariate poly-
nomial and the solutions of I , which yields an algorithm to compute isolating boxes. Given a RUR 
{ f I,a, f I,a,1, f I,a,X , f I,a,Y } of the ideal I , isolating boxes for the real solutions can be computed by first 
computing isolating intervals for the real roots of the univariate polynomial f I,a and then, evaluating 
the rational fractions f I,a,X

f I,a,1
and f I,a,Y

f I,a,1
by interval arithmetic. However, for the simplicity of the proof, 

instead of evaluating by interval arithmetic each of these fractions of polynomials, we instead com-
pute the product of its numerator with the inverted denominator modulo f I,a , and then evaluate this 
resulting polynomial on the isolating intervals of the real roots of f I,a (note that we obtain the same 
complexity bound if we directly evaluate the fractions, but the proof is more technical, although not 
difficult, and we omit it here). When these isolating intervals are sufficiently refined, the computed 
boxes are necessarily disjoint and thus isolating. The following proposition analyzes the bit complexity 
of this algorithm.

Proposition 35. Given a RUR of 〈P , Q 〉, isolating boxes for the solutions of 〈P , Q 〉 can be computed in 
Õ B(d8 + d7τ ) bit operations, where d bounds the total degree of P and Q , and τ bounds the bitsize of their 
coefficients. The vertices of these boxes have bitsize in Õ(d3τ ).

Proof. For every real solution α of I = 〈P , Q 〉, let J X,α × J Y ,α be a box containing it. A sufficient 
condition for these boxes to be isolating is that the width of every interval J X,α and J Y ,α is less 
than half the separation bound of the resultant of P and Q with respect to X and Y , respectively. 
Such a resultant has degree at most 2d2 and bitsize in Õ (dτ ) by Base et al. (2006, Proposition 8.46). 
Lemma 34 thus yields a lower bound of 2−ε with ε in Õ (d3τ ) on the separating bound of such a 
resultant. It is thus sufficient to compute, for every α, a box J X,α × J Y ,α that contains α and such 
that the widths of these intervals are smaller than half of 2−ε . For clarity and technical reasons, we 
define ε′ = ε + 2. In fact, an explicit value of ε is not needed to compute isolating boxes since the 
algorithm uses adaptive refinements of the boxes and a test of box disjointness. On the other hand, 
an explicit value of ε will be used to reduce the bitsize of the box endpoints and an asymptotic 
estimate will be used for the complexity analysis. More precisely, the algorithm proceeds as follows. 
First, the real roots of f I,a are isolated. Then, we refine these intervals and, during the refinement, 
we routinely evaluate the polynomials of the mapping at these intervals, and we stop when all the 
resulting boxes are pairwise disjoint. It is of course critical not to evaluate the polynomials of the 
mapping too often; for every real root of f I,a , we perform these evaluations every time the number 
of identical consecutive first bits of the two interval endpoints doubles or, in other words, every time 
the width of the interval becomes smaller than 2−2k

for some positive integer k.
According to Lemma 21, given a RUR { f I,a, f I,a,1, f I,a,X , f I,a,Y } of I , the mapping γ �→ (

f I,a,X
f I,a,1

(γ ),

f I,a,Y
f I,a,1

(γ )) defines a one-to-one correspondence between the real roots of f I,a and those of I . Thus 
every isolating interval Jγ of the real roots of f I,a is mapped through this mapping to a pair of 
intervals defining a box that contains the corresponding solution of I . We first show how to modify 
this rational mapping into a polynomial one. Second, we bound, in terms of the width of Jγ , the side 
length of the box obtained by interval arithmetic as the image of Jγ through the mapping. We will 
then deduce an upper bound on the width of Jγ that ensures that the side length of its box image is 
less than 2−ε′

. This thus gives a worst-case refinement precision on the isolating intervals of f I,a for 
the boxes to be disjoint. We then analyze the complexity of the proposed algorithm.

Polynomial mapping. By Proposition 23, the polynomials f I,a and f I,a,1 are coprime and thus f I,a,1
is invertible modulo f I,a . The rational mapping can thus be transformed into a polynomial one by 
replacing 1

f I,a,1
by the inverse of f I,a,1 modulo f I,a . Since 1

f I,a,1
and the inverse of f I,a,1 modulo f I,a

coincide when f I,a vanishes (by Bézout’s identity), this polynomial mapping still maps the real roots 
of f I,a to those of I .

This polynomial mapping can be computed in Õ B(d6 + d5τ ) bit operations and these polynomials 
have degree less than 4d2 and bitsize in Õ (d4 + d3τ ). Indeed, the bit complexity of computing the 
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inverse 1
f I,a,1

modulo f I,a is softly linear in the square of their maximum degree times their maxi-

mum bitsize (von zur Gathen and Gerhard, 2003, Corollary 11.11(ii)),19 which yields a complexity of 
Õ B((d2)2(d2 + dτ )) by Theorem 22. The bitsize of this inverse is softly linear in the product of their 
maximum degree and maximum bitsize (von zur Gathen and Gerhard, 2003, Corollary 6.52), that is 
Õ (d2(d2 + dτ )). Furthermore, the product of this inverse and of f I,a,X or f I,a,Y can also be done with 
a bit complexity that is softly linear in the product of their maximum degree and maximum bitsize 
(von zur Gathen and Gerhard, 2003, Corollary 8.27), that is in Õ B(d2(d4 + d3τ )). This concludes the 
proof of the claim since the degree of the inverse modulo f I,a is less than that of f I,a and all the 
polynomials of the RUR have degrees at most d2 by Theorem 22.

Width expansion through interval arithmetic evaluation. We recall a standard straightforward property 
of interval arithmetic for polynomial evaluation. We consider here exact interval arithmetic, that is, 
the arithmetic operations on the interval endpoints are considered exact. Let J = [a, b] be an interval 
with rational endpoints such that max(|a|, |b|) � 2σ and let f ∈ Z[T ] be a polynomial of degree d f
with coefficients of bitsize τ f . Denoting the width of J by w( J ) = |b − a|, f ( J ) can be evaluated by 
interval arithmetic into an interval f�( J ) whose width is at most 2τ f +d f σ d2

f w( J ); see e.g. Cheng et 
al. (2010, Lemma 8). In other words, if w( J ) � 2−ε′−τ f −d f σ−2 log d f , then w( f�( J )) � 2−ε′

.
We now apply this property to the polynomials of the mapping evaluated on isolating intervals of 

f I,a . We denote by d f and τ f the maximum degree and bitsize of the polynomials of the mapping; 
as shown above d f < 4d2 and τ f ∈ Õ (d4 + d3τ ). The polynomial f I,a has bitsize τ f I,a in Õ (d2 + dτ )

(Theorem 22), thus, by Cauchy’s bound (see e.g. Yap, 2000, §6.2), the maximum absolute value of its 
roots is smaller than 1 + 22τ f I,a . Considering intervals of isolation for f I,a whose widths are bounded 
by a constant, we thus have that the maximum absolute value of the endpoints of the isolating 
intervals are smaller than 2σ with σ = Õ (d2 + dτ ). Now, consider any isolating interval of f I,a of 
width less than 2−ε′−τ f −d f σ−2 log d f . The above property implies that we can evaluate by interval 
arithmetic the polynomials of the mapping on any such intervals and obtain an interval of width less 
than 2−ε′

. In other words, the worst-case refinement precision of the isolating intervals of f I,a for 
the boxes to be disjoint is L = ε′ + τ f + d f σ + 2 log d f . In addition, since ε′ is in Õ (d3τ ), L is in 
Õ (d4 + d3τ ).

Analysis of the algorithm. For isolation and refinement, we consider the polynomial pp( f I,a), instead of 
f I,a , which is also of degree bounded by d2 and bitsize in Õ (d2 + dτ ). Indeed, Proposition 28 implies 
that the integer polynomial pp( f I,a) has bitsize in Õ (d2 + dτ ) and Lemma 4 yields that its squarefree 
part (which the gcd-free part of itself and its derivative) is of the same bitsize and can be computed in 
Õ (d6 + d5τ ). According to Lemma 33, isolating intervals of the real roots of pp( f I,a) can be computed 
and refined up to a width less than 2−L with Õ B((d2)3 + (d2)2(d2 + dτ ) + d2L) bit operations which 
is in Õ B(d6 + d5τ ) since L = Õ (d4 + d3τ ).

It remains to analyze the cost of the evaluations of the mapping and the cost of the box-
disjointness tests. For a given root, an evaluation of the polynomials of the mapping is performed 
each time its isolating interval precision is doubled, the number of evaluations is thus logarithmic in 
the maximum precision reached, that is L. One evaluation by interval arithmetic of the polynomials 
of the mapping, which have degree O (d2) and bitsize Õ (d4 + d3τ ), on one isolating intervals whose 
endpoints have bitsize at most L ∈ Õ (d4 + d3τ ) can be done in Õ B(d2(d4 + d3τ )) bit operations by 
Lemma 6 and the resulting intervals have endpoints of bitsize in Õ (d2(d4 + d3τ )). The cost of the 
O (log L) evaluations for the O (d2) roots is then in Õ B(d8 + d7τ ). Moreover, the algorithm requires 
testing O (log L) times whether some of the O (d2) boxes intersect, which can be done, in total, with 
O (log L) times Õ (d2) arithmetic operations (see e.g. Zomorodian and Edelsbrunner, 2002, §3) and thus 
with Õ B(d8 + d7τ ) bit operations since the vertices of the box vertices have bitsize in Õ (d6 + d5τ ).

19 von zur Gathen and Gerhard (2003, Corollary 11.11(ii)) applies because this inverse is the cofactor of f I,a,1 in the last line 
of the extended Euclidean algorithm corresponding to the resultant of f I,a,1 and f I,a . Note that this assumes that f I,a,1 and 
f I,a have integer coefficients but this is not an issue because, by Proposition 28, all polynomials of the RUR can be transformed 
into integer polynomials with the same asymptotic bitsize by multiplying them by one and the same integer.
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Therefore, we can compute isolating boxes for the solutions of 〈P , Q 〉 in Õ B(d8 + d7τ ) bit opera-
tions, and the box vertices have bitsize in Õ B(d6 + d5τ ).

Bitsize of the box vertices. We finally show how to compute, from the isolated boxes with vertices of 
bitsize in Õ (d6 +d5τ ), some larger isolating boxes whose vertices have bitsize in Õ (d3τ ). The method 
is identical for the X or the Y -coordinates of the boxes, thus we only consider the x-coordinates. We 
iteratively refine the boxes as describe above except that, once none of the boxes intersect, we carry 
on with the iterative refinement of the boxes until the distance in X between any two boxes that 
do not overlap in X is larger than 1

2 2−ε where ε, as defined at the beginning of the proof, is such 
that the distance between any two roots of the resultant of P and Q with respect to X is at least 
2−ε; we use here an explicit value for ε which is given by Lemma 34. On the other hand, if we were 
to refine all the boxes until their widths are less than 2−ε′ = 1

4 2−ε , the distance between any two 
boxes that do not overlap in X would be ensured to be larger than 1

2 2−ε . Hence the above analysis of 
the algorithm still applies since we considered that all boxes could be refined until their width (and 
height) do not exceed 2−ε′

.
Now, for every box, all the other boxes that do not overlap in X are at distance more than 1

2 2−ε

in X (before enlargement), so the considered box can be enlarged in X using coordinates in intervals 
of length at least 1

4 2−ε on the left and on the right sides of the box. We conclude the argument by 
noting that, given any such interval [a, b] of width at least 2−ε′

with ε′ = ε + 2 ∈ Õ (d3τ ) and such 
that |a| and |b| are smaller than 2σ with σ = Õ (d2 + dτ ) (by Cauchy bound, as noted above), we can 
easily compute in that interval a rational of bitsize at most ε′ + σ ∈ Õ (d3τ ).20 �
Remark 36. It is straightforward that the above proof and proposition also hold if a parameterization 
of González-Vega and El Kahoui (1996) is given instead of a RUR.

5.2. Sign of a polynomial at the solutions of a system

This section addresses the problem of computing the sign (+, − or 0) of a given polynomial F at 
the solutions of a bivariate system defined by two polynomials P and Q . We consider in the following 
that all input polynomials, P , Q and F are in Z[X, Y ], have degree at most d and coefficients of bitsize 
at most τ . We assume without loss of generality that the bound d is even. Recall that, as mentioned 
in the introduction, the best known complexity for this problem is to our knowledge Õ B(d10 + d9τ )

for the sign at one real solution and Õ B(d12 + d11τ ) for the sign at all the solutions; see Diochnos 
et al. (2009, Th. 14 and Cor. 24) with the improvement of Sagraloff (2012) for the root isolation. We 
first describe a naive RUR-based sign_at algorithm for computing the sign at one real solution of the 
system, which runs in Õ B(d9 + d8τ ) time. Then, using properties of generalized Sturm sequences, we 
analyze a more efficient algorithm that runs in Õ B(d8 + d7τ ) time. We also show that the sign of F
at the O (d2) solutions of the system can be computed in only O (d) times that for one real solution.

Once the RUR { f I,a, f I,a,1, f I,a,X , f I,a,Y } of I = 〈P , Q 〉 is computed, we can use it to translate a 
bivariate sign computation into a univariate sign computation. Indeed, let F (X, Y ) be the polynomial 
to be evaluated at the solution (α, β) of I that is the image of the root γ of f I,a by the RUR mapping. 
We first define the polynomial f F (T ) roughly as the numerator of the rational fraction obtained by 
substituting X = f I,a,X (T )

f I,a,1(T )
and Y = f I,a,Y (T )

f I,a,1(T )
in the polynomial F (X, Y ), so that the sign of F (α, β) is 

the same as that of f F (γ ).

20 A rational of bitsize at most ε′ + σ can be constructed as follows. We can assume without loss of generality that a and 
b are both positive since the case where they are both negative is symmetric and, otherwise, the problem is trivial. Let qk be 
the truncation of b after the k-th digits of the mantissa, i.e. qk = �b2k�2−k , and let k1 be the smallest nonnegative integer such 
that qk1 � a. By construction qk1 ∈ [a, b] and we prove that its bitsize is at most ε′ + σ . If k1 = 0, qk1 = �b� � 2σ thus qk1 has 
bitsize at most σ . Otherwise, with k0 = k1 − 1, we have qk0 < a which implies that b − qk0 > b − a � 2−ε′

. On the other hand, 
b −qk0 = 2−k0 (b2k0 −�b2k0 �) < 2−k0 , thus 2−ε′

< 2−k0 and ε′ > k0. It follows that the bitsize of qk1 , which is k1 plus the bitsize 
of �b�, is less than ε′ + 1 plus σ .
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Lemma 37. The primitive part21 of f F (T ) = f d
I,a,1(T )F (T − aY , Y ), with Y = f I,a,Y (T )

f I,a,1(T )
, has degree O (d3), 

bitsize in Õ (d3 + d2τ ), and it can be computed with Õ B(d7 + d6τ ) bit operations. The sign of F at a real 
solution of I = 〈P , Q 〉 is equal to the sign of pp( f F ) at the corresponding root of f I,a via the mapping of the 
RUR.

Proof. We first compute the polynomial F (T − aY , Y ) in the form 
∑d

i=0 ai(T )Y i . Then, f F (T ) is equal 
to 

∑d
i=0 ai(T ) f I,a,Y (T )i f I,a,1(T )d−i . Consequently, computing an expanded form of f F (T ) can be done 

by computing the ai(T ), the powers f I,a,Y (T )i and f I,a,1(T )i , and their appropriate products and sum.

Computing ai(T ). According to Lemma 7, P (T − SY, Y ) can be expanded with Õ B(d4 + d3τ ) bit op-
erations and its bitsize is in Õ (d + τ ). These bounds also apply to F (T − SY, Y ) and we deduce 
F (T − aY , Y ) by substituting S by a. Writing F (T − SY, Y ) = ∑d

i=0 f i(T , Y )Si , the computation of 
F (T − aY , Y ) can be done by computing and summing the f i(T , Y )ai . Since a has bitsize in O (log d)

by hypothesis, ai has bitsize in O (d log d) ⊆ Õ (d), and computing all the ai can be done with Õ B(d2)

bit operations. For each ai , computing f i(T , Y )ai can be done with O (d2) multiplications between 
integers of bitsize in Õ (d + τ ), and thus with Õ B(d2(d + τ )) bit operations. Thus, computing all the 
f i(T , Y )ai can be done with Õ B(d3(d + τ )) bit operations, and summing, for every one of the O (d2)

monomials in (T , Y ), d coefficients (corresponding to every i) of bitsize in Õ (d + τ ) can also be done 
with Õ B(d3(d + τ )) bit operations, in total. It follows that, F (T − aY , Y ) and thus all the ai(T ) can be 
computed with Õ B(d4 + d3τ ) bit operations.

Computing f I,a,Y (T )i and f I,a,1(T )i . By Theorem 22, f I,a,Y (T ) has degree O (d2) and bitsize Õ (d2 +
dτ ), thus f I,a,Y (T )i has degree in O (d3) and bitsize in Õ (d3 + d2τ ). Computing all the f I,a,Y (T )i

can be done with O (d) multiplications between these polynomials. Every multiplication can be done 
with a bit complexity that is softly linear in the product of the maximum degrees and maximum 
bitsizes (von zur Gathen and Gerhard, 2003, Corollary 8.27), thus all the multiplications can be done 
with Õ B(d4(d3 + d2τ )) bit operations in total. It follows that all the f I,a,Y (T )i , and similarly all the 
f I,a,1(T )i , can be computed using Õ B(d7 + d6τ ) bit operations and their bitsize is in Õ (d3 + d2τ ).

Computing f F (T ). Computing ai(T ) f I,a,Y (T )i f I,a,1(T )d−i , for i = 0, . . . , d, amounts to multiplying O (d)

times, univariate polynomials of degree O (d3) and bitsize Õ (d3 + d2τ ), which can be done, similarly 
as above, with Õ (d7 +d6τ ) bit operations. Finally, their sum is the sum of d univariate polynomials of 
degree O (d3) and bitsize Õ (d3 + d2τ ), which can also be computed within the same bit complexity. 
Hence, f F (T ) can be computed with Õ B(d7 + d6τ ) bit operations and its coefficients have bitsize in 
Õ (d3 + d2τ ).

Primitive part of f F (T ). According to Proposition 28, there exists an integer r of bitsize in Õ (d2 + dτ )

such that its product with the RUR polynomials gives polynomials in Z[T ] of bitsize in Õ (d2 + dτ ). 
Consider the polynomial rd f F (T ) = (r f I,a,1(T ))d F (T − aY , Y ) with Y = r f I,a,Y (T )

r f I,a,1(T )
. This polynomial has 

its coefficients in Z since r f I,a,Y (T ) and r f I,a,1(T ) are in Z[T ]. Moreover, since r f I,a,Y (T ) and r f I,a,1(T )

have bitsize in Õ (d2 + dτ ), rd f F (T ) can be computed, similarly as above, in Õ B(d7 + d6τ ) and it has 
bitsize in Õ (d3 + d2τ ). The primitive part of f F (T ) has also bitsize in Õ (d3 + d2τ ) (since it is smaller 
than or equal to that of rd f F (T )) and it can be computed from rd f F (T ) with Õ B(d3(d3 + d2τ )) bit 
operations by computing O (d3) gcds of integers having bitsize Õ (d3 + d2τ ) (Yap, 2000, §2.A.6).

Signs of F and f F . It remains to show that the sign of F at a real solution of I = 〈P , Q 〉 is the sign 
of f F at the corresponding root of f I,a via the mapping of the RUR. By Lemma 21, there is a one-
to-one mapping between the roots of f I,a and those of I = 〈P , Q 〉 that maps a root γ of f I,a to 
a solution (α, β) = (

f I,a,X (γ )

f I,a,1(γ )
, f I,a,Y (γ )

f I,a,1(γ )
) of I such that γ = α + aβ and f I,a,1(γ ) 
= 0. For any such 

pair of γ and (α, β), f F (γ ) = f d
I,a,1(γ )F (γ − a f I,a,Y (γ )

f I,a,1(γ )
, f I,a,Y (γ )

f I,a,1(γ )
) by definition of f F (T ), and thus 

f F (γ ) = f d
I,a,1(γ )F (α, β). It follows that f F (γ ) and F (α, β) have the same sign since f I,a,1(γ ) 
= 0

and d is even by hypothesis. �
21 See definition in Section 4.2.
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Naive algorithm. The knowledge of a RUR { f I,a, f I,a,1, f I,a,X , f I,a,Y } of I = 〈P , Q 〉 yields a straightfor-
ward algorithm for computing the sign of F at a real solution of I . Indeed, it is sufficient to isolate 
the real roots of f I,a , so that the intervals are also isolating for f I,a f F , and then to evaluate the sign 
of f F at the endpoints of these isolating intervals. We analyze the complexity of this straightforward 
algorithm before describing our more subtle and more efficient algorithm. We provide this analysis 
for several reasons: first it answers a natural question, second it shows that even a RUR-based naive 
algorithm performs better than the state of the art.

Lemma 38. Given a RUR { f I,a, f I,a,1, f I,a,X , f I,a,Y } of I = 〈P , Q 〉 (satisfying the bounds of Theorem 22) and 
an isolating interval for a real root γ of f I,a, the sign of F at the real solution of I that corresponds to γ can be 
computed with Õ B(d9 + d8τ ) bit operations.

Proof. By Lemma 37, pp( f F ) has degree O (d3) and bitsize Õ (d3 + d2τ ), and it can be computed with 
Õ B(d7 + d6τ ) bit operations. By Theorem 22, f I,a has degree O (d2) and bitsize Õ (d2 + dτ ), thus 
the product pp( f F ) f I,a has degree O (d3) and bitsize Õ (d3 + d2τ ). By Lemma 34, the root separation 
bound of pp( f F ) f I,a has bitsize Õ (d6 + d5τ ). We refine the isolating interval of γ for f I,a to a width 
less than the root separation bound of pp( f F ) f I,a , which can be done with Õ B((d2)3 + (d2)2(d2 +
dτ ) + d2(d6 + d5τ )) = Õ B(d8 + d7τ ) bit operations according to Lemma 33. Furthermore, we can 
ensure that the new interval has rational endpoints with bitsize Õ (d6 +d5τ ), similarly as in the proof 
of Proposition 35. On the other hand, by Lemma 4, since pp( f F ) has bitsize Õ (d3 +d2τ ), its squarefree 
part pp( f F ) can be computed in complexity Õ B((d3)2(d3 + d2τ )) = Õ B(d9 + d8τ ) and it has bitsize 
in Õ B(d3 + d2τ ). It then follows from Lemma 6 that the evaluation of pp( f F ) at the endpoints of 
the refined interval can be done with Õ B(d3(d6 + d5τ )) bit operations which concludes the proof by 
Lemma 37. �
Improved algorithm. Our more subtle algorithm is, in essence the one presented by Diochnos et al. for 
evaluating the sign of a univariate polynomial (here pp( f F )) at the roots of a squarefree univariate 
polynomial (here f I,a) (Diochnos et al., 2009, Corollary 5). The idea of this algorithm comes originally 
from Lickteig and Roy (2001), where the Cauchy index of two polynomials is computed by means of 
sign variations of a particular remainder sequence called the Sylvester–Habicht sequence. In Diochnos 
et al. (2009), this approach is slightly adapted to deduce the sign from the Cauchy index (Yap, 2000, 
Theorem 7.3) and the bit complexity is given in terms of the two initial degrees and bitsizes. Unfortu-
nately, the corresponding proof is problematic because the authors refer to two complexity results for 
computing parts of the Sylvester–Habicht sequences and none of them actually applies.22 Following 
the spirit of their approach, we present in Lemma 39 a new (weaker) complexity result for evaluating 
the sign of a univariate polynomial at the roots of a squarefree univariate polynomial. This result is 
used to derive the bit complexity of evaluating the sign of a bivariate polynomial at the roots of the 
system. For clarity, we postpone the proof of this lemma to Section 5.2.1 after Theorem 40.

Lemma 39. Let f ∈ Z[X] be a squarefree polynomial of degree d f and bitsize τ f , and (a, b) be an isolating 
interval of one of its real roots γ with a and b distinct rationals of bitsize in ̃O (d f τ f ) and f (a) f (b) 
= 0. Let g ∈
Z[X] be of degree dg and bitsize τg . The sign of g(γ ) can be computed in Õ B((d3

f + d2
g)τ f + (d2

f + d f dg)τg)

bit operations. The sign of g at all the real roots of f can be computed with Õ B((d3
f + d2

f dg + d2
g)τ f + (d3

f +
d f dg)τg) bit operations.

22 Precisely, their proof is based on their Proposition 1 which claims, based on Lickteig and Roy (2001) and Reischert (1997)
that given two polynomials f and g of degree p > q and bitsize in O (τ ), any of their polynomial subresultants as well as the 
whole quotient chain corresponding to the subresultant sequence can be computed with Õ B (pqτ ) bit operations. However, in 
Lickteig and Roy (2001) the complexity results are not stated in terms of p and q but only in terms of the maximum degree 
while in Reischert (1997), the result assumes that the (q − 1)th subresultant of f and g is known.
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Theorem 40. Given a RUR { f I,a, f I,a,1, f I,a,X , f I,a,Y } of I = 〈P , Q 〉 (satisfying the bounds of Theorem 22), 
the sign of F at a real solution of I can be computed with Õ B(d8 + d7τ ) bit operations. The sign of F at all the 
solutions of I can be computed with Õ B(d9 + d8τ ) bit operations.

Proof. By Lemma 37, the sign of F at the real solutions of I , is equal to the sign of pp( f F ) at the 
corresponding roots of f I,a , or equivalently at those of pp( f I,a). Furthermore, pp( f F ) has degree O (d3), 
bitsize in Õ (d3 + d2τ ), and it can be computed with Õ B(d7 + d6τ ) bit operations. On the other hand, 
by Theorem 22 and Proposition 28, the primitive part of f I,a has degree at most d2 and bitsize in 
Õ (d2 + dτ ). Since f I,a is monic (see Eq. (6)), its primitive part can be computed by multiplying it by 
the lcm of the denominators of its coefficients. This lcm can be computed with O (d2) lcms of integers 
whose bitsizes remain in Õ (d2 + dτ ) (since f I,a is monic and its primitive part has bitsize in Õ (d2 +
dτ )). Each lcm can be computed with Õ B(d2 +dτ ) bit operations (Yap, 2000, §2.A.6), thus pp( f I,a) can 
be computed in Õ (d4 +d3τ ) bit operations.23 The squarefree part of pp( f I,a) can thus be computed in 
Õ B(d4(d2 + dτ )) bit operations and it has bitsize in Õ (d2 + dτ ), by Lemma 4. By Lemmas 33 and 34, 
the isolating intervals (if not given) of pp( f I,a) can be computed in Õ B((d2)3 + (d2)2(d2 + dτ )) bit 
operations with intervals endpoints of bitsize satisfying the hypotheses of Lemma 39. Indeed, we can 
ensure during the isolation of the roots of f = pp( f I,a) that the isolating intervals have endpoints with 
bitsize in Õ (d f τ f ), similarly as in the proof of Proposition 35. Applying Lemma 39 then concludes the 
proof. �
Remark 41. Theorem 40 also holds if the solutions of I = 〈P , Q 〉 are described by the rational param-
eterization of González-Vega and El Kahoui (1996) instead of a RUR. Indeed, such parameterization 
is defined, in the worst case, by Θ(d) univariate polynomials f i of degree d fi whose sum d f is at 
most d2, and by associated rational one-to-one mappings which are defined, as for the RUR, by poly-
nomials of degree O (d2) and bitsize O (d2 + dτ ). The result of Theorem 40 on the sign of F at one
real solution of I thus trivially still holds. For the sign of F at all real solutions of I the result also 
follows from the following observation. In the proofs of Lemmas 42 and 39, the computation of one 
sequence of unevaluated Sylvester–Habicht transition matrices has complexity Õ B(pH) (in proof of 
Lemma 42) where p is in O (d fi + dg) in the proof of Lemma 39. The sum of the pH over all i is 
thus O ((d f + ddg)H) instead of O ((d f + dg)H) as for the RUR. However, dg H writes in the proof 
of Lemma 39 as Õ (dg((d f + dg)τ f + d f (τ f + τg))) = Õ (d f dg(τ f + τg) + d2

gτ f ) which writes in the 
proof of Theorem 40 as Õ (d2d3(d3 + d2τ ) + (d3)2(d2 + dτ )) = Õ (d8 + d7τ ). Thus multiplying this by 
d remains within the targeted bit complexity. On the other hand, the complexity of the evaluation 
phase in the proofs of Lemmas 42 and 39 does not increase when considering the representation of 
Gonzalez-Vega and El Kahoui instead of the RUR because the total complexity of the evaluations de-
pends only on the number of solutions at which we evaluate the sign of the other polynomial and on 
the degree and bitsize of the polynomials involved (values which do not increase in Gonzalez-Vega 
and El Kahoui representation; only the number of polynomials is larger).

5.2.1. Proof of Lemma 39
As shown in Basu et al. (2006, Theorem 2.61), the sign of g(γ ) is V (SRemS( f , f ′ g; a, b)) where 

V (SRemS(P , Q ; a, b)) is the number of sign variations in the signed remainder sequence of P and 
Q evaluated at a minus the number of sign variations in this sequence evaluated at b; see Defini-
tion 1.7 in Basu et al. (2006) for the sequence and Notation 2.32 for the sign variation. On the other 
hand, for any P and Q such that deg(P ) > deg(Q ) and P (a) P (b) 
= 0 or Q (a) Q (b) 
= 0, we have 
according to Roy (1996, Theorems 3.2, 3.18 and Remarks 3.9, 3.25)24 that V (SRemS(P , Q ; a, b)) =
W (SylH(P , Q ; a, b)) where SylH is the Sylvester–Habicht sequence of P and Q , and W is the related 

23 Notice that if f I,a has been computed using Proposition 23, then instead of computing pp( f I,a) one can consider R(T , a) =
f I,a(T ) LR (a) which is a polynomial of degree O (d2) with integer coefficients of bitsize Õ (d2 + dτ ) by Lemma 7.
24 The same result can be found directly stated, in French, in Lombardi (1990, Theorem 4).
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sign variation function.25 The following intermediate result is a consequence of an adaptation of Lick-
teig and Roy (2001, Theorem 5.2) in the case where the polynomials P and Q have different degrees 
and bitsizes.

Lemma 42. Let P and Q in Z[X] with deg(P ) = p > q = deg(Q ) and bitsize respectively τP , τQ . If a and b
are two rational numbers of bitsize bounded by σ , the computation of W (SylH(P , Q ; a, b)) can be performed 
with Õ B((p + q2)σ + p(pτQ + qτP )) bit operations.

Moreover, if a� and b� , 1 � � � u, are rational numbers of bitsizes that sum to σ , the computation of 
W (SylH(P , Q ; a�, b�)) can be performed for all � with Õ B((p + q2)σ + (p + qu)(pτQ + qτP ) + puτP ) bit 
operations.

Proof. Following the algorithm in Lickteig and Roy (2001), we first compute the consecutive 
Sylvester–Habicht transition matrices of P and Q denoted by N j,i with 0 � j < i � p. These matrices 
link consecutive regular couples26 (Shi, Shi−1) and (Sh j, Sh j−1) in the Sylvester–Habicht sequence as 
follows:(

Sh j
Sh j−1

)
= N j,i

(
Shi

Shi−1

)
such that i � p and (Shp, Shp−1) = (P , Q ). (12)

According to Lickteig and Roy (2001, Theorem. 5.2 & Corollary 5.2), computing all the matrices N j,i
of P and Q can be done with Õ B(pH) bit operations, where H ∈ Õ (qτP + pτQ ) is an upper bound 
on the bitsize appearing in the computations given by Hadamard’s inequality.

We evaluate the Sylvester–Habicht sequence at a rational a by first evaluating P , Q , and all the 
matrices N j,i at a, and then by applying iteratively the above formula. Doing the same at b yields 
W (SylH(P , Q ; a, b)).

First, note that the evaluation of P (a) and Q (a) can be done with Õ B(p(τP +σ)) plus Õ B(q(τQ +
σ)), that is Õ B(p(τP + τQ +σ)) bit operations (since p > q), by Lemma 6. The polynomials appearing 
in the matrices N j,i have bitsize at most H and the sum of their degrees is equal to p (Lickteig and 
Roy, 2001, Corollary 4.3).27 Thus, all N j,i(a) have bitsize Õ (pσ + H) and they can be computed in a 
total of Õ B(p(σ + H)) bit operations, by Lemma 6. Moreover, by considering the matrices N j,i other 
than the first one Nk,p , as the consecutive transition matrices of the Sylvester–Habicht sequence of 
the first regular couple (Shk, Shk−1) after (Shp, Shp−1), we have that the polynomials appearing in 
these matrices have the sum of their degrees equal to that of Shk which is at most q (since k �
p − 1 and Shp−1 = Q ). Thus, except the first one Nk,p(a), all evaluated matrices N j,i(a) have bitsize 
Õ (qσ + H) and they can be computed in a total of Õ B(q(σ + H)) bit operations.

We now apply iteratively Eq. (12) for computing all the Shi(a). Since all Sylvester–Habicht poly-
nomials have bitsize at most H and degree at most q except the first one Shp = P , the bitsize of 
Shi<p(a) is in O (qσ + H) and that of Shp(a) is in O (pσ + τP ). Given P (a), Q (a) and all N j,i(a), it 
follows from their bitsizes that we can compute iteratively the Shi(a) in time Õ B(pσ + H) for the 
first regular couple after (Shp, Shp−1) = (P , Q ) and in time Õ B(qσ + H) for each of the others. Thus, 
for computing of W (SylH(P , Q ; a, b)), the initial computation of all N j,i takes Õ B(pH) bit operations 
and the evaluation phase takes Õ B(p(τP + τQ + σ)) plus Õ B(p(σ + H) + q(qσ + H)) bit operations, 
which gives a total of Õ B(p(σ + H) + q2σ) bit operations.

25 The Sylvester–Habicht sequence, defined in Basu et al. (2006, §8.3.2.2) as the Signed Subresultant sequence, can be derived 
from the classical subresultant sequence (El Kahoui, 2003) by multiplying the two starting subresultants by +1 the next two 
by −1 and so on. W is defined as the usual sign variation with the following modification for groups of two consecutive zeros: 
count one sign variation for the groups [+, 0, 0, −] and [−, 0, 0, +], and two sign variations for the groups [+, 0, 0, +] and 
[−, 0, 0, −]; see Base et al. (2006, §9.1.3 Notation 9.11).
26 Regular couples in the Sylvester–Habicht sequence are the nonzero Sylvester–Habicht polynomials (Shi , Shi−1) such that 

deg(Shi) > deg(Shi−1).
27 Lickteig and Roy (2001, Corollary 4.3) states that consecutive Sylvester–Habicht transition matrices consist of one zero, 

two integers and a polynomial which is, up to a coefficient, the quotient of the division of two consecutive Sylvester–Habicht 
polynomials. These polynomials being proportional to polynomials in the remainder sequence of (P , Q ), the sum of the degrees 
of their quotients is equal to the degree of P .
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We now consider the case of computing W (SylH(P , Q ; a�, b�)) for 1 � � � u. We slightly change 
the above algorithm as follows. We only change the way to evaluate the first regular couple 
(Shk, Shk−1) after (Shp, Shp−1) at the a� (and b�). Once the matrices N j,i have been computed, we 
compute the (non-evaluated) first regular couple (Shk, Shk−1) =Nk,p(Shp, Shp−1). Since the polynomi-
als in Nk,p have degree at most p and bitsize at most H , the couple (Shk, Shk−1) can be computed in 
Õ B(p(H + τP + τQ )) = Õ B(pH) time (von zur Gathen and Gerhard, 2003, Corollary 8.27). As noted 
above, Shk , and thus also Shk−1, have degree at most q and they have bitsize at most H , so they can 
be evaluated at a given a� in time Õ B(q(σ� + H)) where σ� is the bitsize of a� . Now, the polynomials 
appearing in the matrices N j,i , other than the first one Nk,p , have bitsize at most H and the sum of 
their degrees is at most q, so similarly as above, all the N j,i(a�), except Nk,p(a�), can be computed 
in total bit complexity Õ B(q(σ� + H)). Then, we compute as above each of the other regular couples 
evaluated at a� in time Õ B(qσ� + H). Hence, the initial computation of all N j,i and of (Shk, Shk−1)

takes Õ B(pH) bit operations and the evaluation phase at all the a� takes the sum over �, 1 � � � u, 
of Õ B(p(τP +τQ +σ�)) plus Õ B(q(σ� + H) +q(qσ� + H)) bit operations, that is Õ B(p(τP +τQ ) + (p +
q2)σ� + qH) which sums to Õ B(pu(τP + τQ ) + (p + q2)σ + quH). Hence the total bit complexity for 
computing all the W (SylH(P , Q ; a�, b�)) for 1 � � � u is Õ B((p + q2)σ + (p + qu)H + puτP ) which 
concludes the proof. �
Proof of Lemma 39. We may assume that g has degree greater than one since, if g is a constant 
the problem is trivial and, if g(X) = c X − d, then the sign of g(γ ) follows from (i) the sign of c if 
d
c /∈ (a, b) and from (ii) the signs of c, f (a), and f ( d

c ) if d
c ∈ (a, b); indeed, the signs of f (a) 
= 0 and 

f ( d
c ) determine whether γ lies in (a, dc ), { d

c }, or ( d
c , b). Hence, when g has degree one, the sign of 

g(γ ) can be computed with Õ B(d f (τg + d f τ f )) bit operations according to Lemma 6.
Recall that the sign of g(γ ) is V (SRemS( f , f ′ g; a, b)) (Basu et al., 2006, Theorem 2.61). When g

has degree greater than one, we cannot directly apply Lemma 42 since deg( f ) < deg( f ′ g). How-
ever, knowing the sign of f and f ′ g at a and b and noticing that their signed remainder se-
quence starts with [ f , f ′ g, − f , −rem( f ′ g, − f ), . . .], we can easily compute the value c such that 
V (SRemS( f , f ′ g; a, b)) = V (SRemS( f ′ g, − f ; a, b)) + c. Furthermore, as observed at the beginning of 
this section and since f (a) f (b) 
= 0 by hypothesis, V (SRemS( f ′ g, − f ; a, b)) = W (SylH( f ′ g, − f ; a, b)). 
We can now apply Lemma 42 which thus yields the sign of g(γ ) with a bit complexity in 
Õ B((p + q2)σ + p(pτQ + qτP )) which simplifies into Õ B((d3

f + d2
g)τ f + (d2

f + d f dg)τg).
For the sign of g at all the real roots of f , isolating intervals of these roots can be computed in 

complexity Õ B(d3
f + d2

f τ f ) (see Lemma 33) such that the bitsizes of the interval endpoints sum up 
to Õ (d2

f +d f τ f ) (a consequence of Davenport–Mahler–Mignotte bound, see e.g. Diochnos et al., 2009, 
Lemma 6). Similarly as for one root, Lemma 42 then yields that the sign of g at all the real roots of f
can be computed with a bit complexity in Õ B((p +q2)σ + (p +qu)(pτQ +qτP ) + puτP ) which writes 
as Õ B((d f + dg + d2

f )d f τ f + (d f + dg + d2
f )((d f + dg)τ f + d f (τ f + τg)) + (d f + dg)d f (τg + τ f )) and 

simplifies into Õ B((d3
f + d2

f dg + d2
g)τ f + (d3

f + d f dg)τg) bit operations. �
5.3. Over-constrained systems

So far, we focused on systems defined by exactly two coprime polynomials. We now extend our 
results to compute rational parameterizations of zero-dimensional systems defined with additional 
equality or inequality. Let P , Q ∈ Z[X, Y ] be two coprime polynomials of total degree at most d and 
maximum bitsize τ . In this section, we assume given RURI,a = { f I,a, f I,a,1, f I,a,X , f I,a,Y } the RUR of the 
ideal I = 〈P , Q 〉 associated to the separating form X +aY , we also assume that the polynomials of this 
RUR satisfy the bitsize bound of Theorem 22. Given another polynomial F ∈ Z[X, Y ], we have seen in 
the previous section how to compute the sign of F at the solutions of I . With a similar approach, we 
now explain how to split RURI,a according to whether F vanishes or not at the solutions of I .

Let F ∈ Z[X, Y ] be of total degree at most d and maximum bitsize τ . Identifying the roots of f I,a
with the solutions of the system I via the RUR, let f F=0 (resp. f F 
=0) be the squarefree factor of f I,a
such that its roots are exactly the solutions of the system I at which the polynomial F vanishes (resp. 
does not vanish).
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Lemma 43. Given RURI,a, the bit complexity of computing f F=0 (resp. f F 
=0) is in Õ B(d8 + d7τ ) and these 
polynomials have bitsize in Õ (d2 + dτ ).

Proof. The polynomial f F (not to be confused with f F=0 or f F 
=0), as defined in Lemma 37, has 
the same sign as F at the real solutions of the system I . The same holds for complex solutions by 
considering the “sign” as zero or nonzero. The roots of the squarefree polynomial f F=0 = gcd( f I,a, f F )

thus are the α + aβ with (α, β) solution of I and F (α, β) = 0. The polynomial f F 
=0 defined as 
the gcd-free part of f I,a with respect to f F is also squarefree and encodes the solutions such that 
F (α, β) 
= 0.

According to Lemma 37 and the proof of Theorem 40, the primitive part of f F and f I,a can be 
computed in, respectively, Õ B(d7 + d6τ ) and Õ B(d4(d2 + dτ )) bit operations. Moreover, these integer 
polynomials have, respectively, bitsize Õ (d3 + d2τ ) and Õ (d2 + dτ ) and degree O (d3) and O (d2). 
Thus, by Lemma 5, their gcd and the gcd-free part of f I,a with respect to f F , i.e. f F=0 and f F 
=0, can 
be computed with Õ B(d8 + d7τ ) bit operations and they have bitsize in Õ (d2 + dτ ). �

For several equality or inequality constraints, iterating this splitting process gives a parameter-
ization of the corresponding set of constraints. It is worth noticing that the set of polynomials 
{ f F=0, f I,a,1, f I,a,X , f I,a,Y } defines a rational parameterization of the solutions of the ideal 〈P , Q , F 〉, 
but this is not a RUR of this ideal (in the sense of Definition 20). First, because multiplicities are lost 
in the splitting process and second because the coordinate polynomials of the parameterization are 
still those of the ideal I . Still, it is possible to compute a RUR of the radical of the corresponding ideal 
(and similarly for the ideal corresponding to F 
= 0):

Proposition 44. Given RURI,a and F ∈ Z[X, Y ] of total degree at most d and maximum bitsize τ , the bit 
complexity of computing the RUR of the radical of the ideal 〈P , Q , F 〉 is in Õ B(d8 + d7τ ).

Proof. Denote by J the radical of the ideal 〈P , Q , F 〉. The polynomial f F=0 computed in Lemma 43 is 
the first polynomial f J ,a of RUR J ,a . Indeed, it vanishes at the solutions of this ideal (with identification 
of the roots of f J ,a with the solutions of the system J ) and it is squarefree. Then Proposition 23 yields 
that f J ,a,1 is the gcd-free part of f ′

J ,a with respect to f J ,a . As in the proof of Theorem 40, pp( f J ,a)

can be computed in Õ B(d4 + d3τ ) and has bitsize in Õ (d2 + dτ ). By Lemma 5, applied to pp( f J ,a)

and its derivative, f J ,a,1 can be computed in Õ B(d6 + d5τ ).
According to Lemma 21, the X-coordinates of the solutions of J are given by the polynomial 

fraction f J ,a,X
f J ,a,1

at the roots of f J ,a . On the other hand, the solutions of J , seen as solutions of I , 

have their X-coordinates defined by the polynomial fraction f I,a,X
f I,a,1

. This thus implies that f J ,a,X =
f −1

I,a,1 f I,a,X f J ,a,1 modulo f J ,a . The computation of f −1
I,a,1 together with the multiplication with other 

polynomials of the RUR has already been studied in the proof of Proposition 35; this can be done 
in Õ B(d6 + d5τ ) time and gives a polynomial of degree O (d2) and bitsize Õ (d4 + d3τ ). It remains 
to compute the remainder of the division of this polynomial with f J ,a , which can be done in a 
soft bit complexity of the order of the square of the maximum degree times the maximum bit-
size, i.e. Õ B(d8 + d7τ ) (von zur Gathen and Gerhard, 2003, Theorem 9.6 and subsequent discussion). 
A similar computation gives the polynomial f I,a,Y , hence the computation of RUR J ,a can be done in 
Õ B(d8 + d7τ ) bit operations. �
6. Conclusion

We addressed the problem of solving systems of bivariate polynomials with integer coefficients 
via rational parameterizations. Our first contribution concerns the computation of a separating linear 
form, problem which is at the core of approaches based on rational parameterizations. We presented 
an algorithm of worst-case bit complexity Õ B(d8 + d7τ )for finding a separating linear form of such 
systems (of polynomials of degree at most d and coefficients of bitsize at most τ ), improving by a 
factor d2 the best known algorithm for this problem. Our second contribution focuses on the Rational 
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Univariate Representation (RUR) (Rouillier, 1999). We first showed that the polynomials of the RUR of 
a system of two polynomials can be expressed by simple formulas which yield a new simple method 
for computing the RUR and also yield a new bound on the bitsize of these polynomials. This new 
bound implies, in particular, that the total space complexity of such RURs is, in the worst case, Θ(d)

smaller than the alternative rational parameterization introduced by González-Vega and El Kahoui
(1996). Given a RUR, this new bound also yields some improvements on the complexity of computing 
isolating boxes and performing sign_at evaluations. These improvements also hold for the rational 
parameterization of Gonzalez-Vega and El Kahoui. We also addressed the problem of computing RURs 
of over-constrained systems.

Interestingly, computing a separating linear form remains the bottleneck, in terms of worst-case 
bit complexity, in the computation of rational parameterizations of bivariate systems (at least for the 
one of González-Vega and El Kahoui (1996) and for the RUR). Indeed, even though we have decreased 
this complexity to Õ B(d8 + d7τ ), the worst-case complexity of computing the rational parameteriza-
tion of Gonzalez-Vega and El Kahoui was in Õ B(d7 + d6τ ) and we have decreased the complexity of 
computing RURs to the same bound.

Given these new worst-case bounds, two particular problems of interest are the design of theo-
retically efficient randomized algorithms and practically efficient algorithms and implementations. It 
should be stressed that the algorithm we presented for computing a RUR has presumably little prac-
tical interest because the computation of the resultant R(T , S) of trivariate polynomials is not very 
efficient in practice. Concerning probabilistic algorithms, even though the computation of a separating 
form is the worst-case bit-complexity bottleneck, in a Monte-Carlo probabilistic setting, a linear form 
chosen uniformly at random in a set of cardinality kd4 is separating with probability at least 1 − 1

k . 
However, checking that a linear form is separating is essentially as difficult as computing a separating 
form. One possible approach in a Las-Vegas probabilistic setting, it is to choose a candidate separating 
form randomly, compute a RUR-candidate and verify a posteriori using the RUR-candidate if the cho-
sen candidate separating form is actually separating. Furthermore, our new bound on the bitsize of 
RURs can be used to derive practically efficient algorithms using multi-modular arithmetic. Paralleliza-
tion is also quite natural in this context. Such an approach is the topic of current research and we 
refer to Bouzidi et al. (2011) for preliminary work on the subject. Note that the best known Las-Vegas 
algorithm for computing a separating linear form has expected bit complexity Õ B(d7 + d6τ ) (Diatta 
et al., 2008; Diatta, 2009).28 Mehlhorn et al. (2013) also recently showed that isolating boxes of the 
real solutions can be computed (without a rational parameterization) with an expected bit-complexity 
Õ B(d6 + d5τ ) in a Las-Vegas algorithm.
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